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Проведенное исследование направлено на решение актуальной научно-практической проблемы эксплу-

атации лесозаготовительной техники на переувлажненных почвах, которые характерны для более чем 60% тер-

ритории лесного фонда Российской Федерации. Разработана комплексная математическая модель формирования 

касательных напряжений в грунтовом массиве при маневрировании движителя с учетом ключевых параметров: 

угла поворота θ, веса машины и физико-механических свойств грунта. 

В ходе исследования установлены новые критерии эффективности сдвига межколейного массива грунта, 

основанные на аналитическом соотношении импульсов силы сдвига и массы сдвигаемого грунта. Проведенный 

численный анализ демонстрирует, что целенаправленное маневрирование с углами поворота 15-20° и более поз-

воляет обеспечить эффективное разрушение межколейного пространства даже при критической влажности 

грунта до 35%. 

Особое внимание уделено анализу циклического воздействия техники на грунт при многократных про-

ходах. Разработаны практические рекомендации по оптимизации режимов работы операторов лесных машин, 

включая выбор углов маневрирования и траекторий движения в зависимости от влажности грунта и числа про-

ходов. 

Полученные результаты имеют значительную практическую ценность для лесозаготовительной отрасли, 

позволяя снизить экологический ущерб от повреждения почвенного покрова на 20-25% и повысить эксплуатаци-

онную эффективность техники на 15-20% за счет сокращения простоев и увеличения межремонтных периодов 

эксплуатации. 
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Abstract 

The conducted research is aimed at solving the urgent scientific and practical problem of the operation of logging 

equipment on waterlogged soils, which are typical for more than 60% of the territory of the forest fund of the Russian 

Federation. A complex mathematical model has been developed for the formation of tangential stresses in a soil mass 

during propulsion maneuvering, taking into account key parameters: the angle of rotation, the weight of the machine, and 

the physical and mechanical properties of the soil. 

In the course of the study, new criteria for the effectiveness of shifting the inter-track mass of soil were estab-

lished, based on the analytical ratio of the shear force pulses and the mass of the shifted soil. The numerical analysis 



 

Технологии. Машины и оборудование 
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

230                                                                         Лесотехнический журнал 3/2025 

demonstrates that targeted maneuvering with rotation angles of 15-20° or more makes it possible to ensure effective 

destruction of the inter-track space even at critical ground humidity up to 35%. 

Special attention is paid to the analysis of the cyclic effect of machinery on the ground during multiple passes. 

Practical recommendations have been developed to optimize the operating modes of forest machinery operators, including 

the choice of maneuvering angles and driving trajectories depending on soil moisture and the number of passes. 

The results obtained have significant practical value for the logging industry, making it possible to reduce envi-

ronmental damage from soil cover damage by 20-25% and increase the operational efficiency of machinery by 15-20% 

by reducing downtime and increasing maintenance periods. 

Keywords: forest machinery, maneuvering of forest machinery, soil deformation, track formation, geotechnical 

conditions 
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Введение 

     Быстрое и эффективное управление лесами при 

заготовке древесины в больших объемах требует ис-

пользования лесозаготовительных транспортных 

средств, таких как трелевочные тракторы, харве-

стеры и форвардеры [1-3]. Эксплуатация лесозагото-

вительной техники на переувлажненных почвах 

представляет серьёзную научно-практическую про-

блему для лесного комплекса РФ. Более 60 % терри-

тории лесного фонда Российской Федерации нахо-

дится на почвогрунтах III и IV категории. Движение 

транспортной техники затрагивает от 10 до 70 % вы-

рубленной площади, что может нанести за собой 

огромный риск повреждения лесной почвы и экоси-

стемы в целом [3-7]. 

Почвы, характеризующиеся низкой несущей 

способностью и высокой влажностью 𝑊 > 30%, 

широко распространены в северных и заболоченных 

регионах, занимающих значительные площади 

лесфонда РФ. При росте эффективности и произво-

дительности тяжелых колесных машин на террито-

риях с переувлажненной почвой неизбежно приво-

дит к деформации и уплотнению грунта. Послед-

ствиями работы техники в таких условиях является 

снижение продуктивности лесных участков при по-

следующем лесовосстановлении, деградация поч-

венных экосистем, потеря эксплуатационных пока-

зателей (снижение проходимости техники) [8-12].  

Уплотнение почвы приводит к образованию ко-

леи, смешивая почвенные горизонты, раститель-

ность, порубочных остатков. При высокой влажно-

сти почвы W>30%, глубина колеи может достигать 

0,3 – 0,5 м, и более, затрудняя работы техники. Сте-

пень и масштаб образования колеи во время механи-

зированных лесозаготовительных операциях часто 

зависит от типа и характеристик систем заготовок, 

количества проходов машин, уклона местности, 

типа почвы [12-14].  

Проблема минимизации ущерба почвогрунтам 

при лесозаготовках активно исследуется. Основные 

подходы включают оптимизацию конструкцию дви-

жителей, использование гусениц, или снегоходов, 

сезонное ограничение работ и применение техноло-

гий с малой площадью контакта [14-17].  

Вопрос маневрирования движителя на пере-

увлажнённых почвах изучен недостаточно. Суще-

ствующие модели взаимодействия «движитель-
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грунт» фокусируются преимущественно на прямо-

линейном движении и на начальном этапе деформа-

ции. В работе Laschi A были проанализированы эко-

логические последствия лесозаготовок в кустарни-

ковых насаждениях Италии. Было показано, что при 

влажности почвы 28-32% использование шин низ-

кого давления снижает глубину колеи на 18%, но не 

предотвращает образование межколейного про-

странства. Автор отметил необходимость разра-

ботки методов активного управления деформаци-

ями путем изменения траектории движения, количе-

ственных моделей предложено не было [16].   Иссле-

дования Naghdi R выявили снижение уплотнения 

почвы на 15 % при зигзагообразном движении на 

склон, однако эксперимент проводится на грунтах с 

влажностью почвы менее 25 %, где проблема меж-

колейного выступа не актуальны [17]. Теоретиче-

ский анализ Анисимова Г. М. показал снижение 

среднего контактного давления при криволинейном 

движении, но в работе не были рассмотрены каса-

тельные напряжения сдвига τrθ, ключевые для разру-

шения выступа [24].  При анализе литературы были 

сделаны выводы о недостатки исследований количе-

ственных критериев эффективности различных ви-

дов маневрирования для сдвига межколейного про-

странства.  

Целью исследования является разработка теоре-

тических обоснованных рекомендаций по повыше-

нию проходимости колесных лесных машин на пе-

реувлажненных грунтах за счет оптимизации режи-

мов маневрирования движителя, направленных на 

разрушение межколейного пространства и продле-

ния срока службы трелевочных волоков.  

Для достижения цели были поставлены задачи 

по разработке математической модели формирова-

ния касательных напряжений в массиве грунта при 

маневрировании движителя с учетом угла поворота 

θ, веса машины и свойств грунта. Установлены кри-

терии эффективности сдвига межколейного массива 

грунта, основаны на соотношении импульсов силы 

сдвига и массы сдвигаемого грунта.  Проведен чис-

ленный анализ влияния параметров на глубину ко-

леи hк и выполнения критерия сдвига. Определен оп-

тимальный диапазон углов маневрирования θ обес-

печивающий эффективное разрушение межколей-

ного пространства.  

Полученные результаты позволяют научно обос-

новать рекомендации для операторов лесных машин 

по выбору маневрирования при работе на пере-

увлажненных грунтах. Результаты помогут снизить 

экологический ущерб, повысить эксплуатационную 

эффективность  

 
Материалы и методы 

Геометрические размеры сдвигаемого массива 
почвогрунта составляют: ширина Lц равна ширине 
Lб колесной базы за минусом удвоенной ширины Lш 

шин, высота равна глубине колеи hк, длина - длине 
пятна контакта Lп. 

Принимая во внимание значения параметров: 
Lц≈1,4 м (при Lб=3 м и Lш=0,8 м), hк=0,3-0,5 м и 
Lп=0,4-0,5 м, сдвигаемый объем Vк может достигать 
0,3 м3, а масса Mк превысить 0,3 т при плотности ρ 
влажного почвогрунта более 1000 кг/м3. 

Такие параметры сдвигаемого массива требуют 
формирования в его краевой части в границах треле-
вочного волока (технологического коридора) соот-
ветствующих касательных напряжений τ от дей-
ствия сосредоточенной нагрузки Q, равной весу лес-
ной машины или трелевочной системы. 

Многократные проходы движителя по одному и 
тому же участку трелевочного волока лишь усугуб-
ляют проблему, поскольку глубина колеи hк посто-
янно увеличивается, что приводит к постоянному 
росту значений Vк и Mк. 

Необходимо отметить, что наряду с позитивным 
действием в контексте данной проблемы маневри-
рование оказывает и негативное влияние на массив 
почвогрунта в зоне корневой системы подроста и 
оставляемых на доращивание деревьев (при выбо-
рочных рубках, или иных лесохозяйственных меро-
приятиях), что необходимо учитывать при проекти-
ровании охранных полос трасс движения лесных ма-
шин. 

 

Результаты 

В основу математической модели для определе-
ния величины τ положены результаты исследований 
[18, 19]. 

Пусть задана подвижная система координат хOyz 
с центром в точке О приложения нагрузки Q. 

Ось z направим перпендикулярно вниз к поверх-
ности трассы движения лесной машины, ось x - 
вдоль нее и ось y - перпендикулярно направлению 
движения лесной машины. 
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Сосредоточенная сила Q, направленная вдоль 
оси z, оказывает вертикальное давление на поч-
вогрунт qв=Q/SП, где SП – площадь пятна контакта 
движителя с поверхностью движения. В случае, 
если лесосечные или лесохозяйственные работы 
производят на склонах с углом наклона α к линии 
горизонта, то в качестве вертикальной силы прини-
мают составляющую веса в виде Q∙cosα [20,21]. 

Сила распора формирует в направлении оси у го-

ризонтальные напряжения сдвига τс=
ఔ

ଵିఔ
 qв, где ν – 

коэффициент Пуассона. Под совокупным действием 
вертикальных и горизонтальных напряжений при 
превышении определенного предела прочности поч-
вогрунта формируется зона разрушения с образова-
нием колеи глубиной hк. 

При маневрировании движителя процесс дефор-
мирования почвогрунта целесообразно рассмотреть 
в цилиндрической системе координат zrθ с верти-
кальной z, радиальной r и тангенциальной θ коорди-
натами. 

Компоненты тензора напряжений в этом случае 
при возникновении в момент поворота дополнитель-
ных касательных напряжений τrθ определяются как: 
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Из (1) следует, что при отсутствии поворота 
(θ=0) компоненты тензора напряжений являются 
главными: 

σz=σ1, σr=σ2, σθ=σ3, τrθ=0,             (2) 
которые в соответствии с [1, 2] равны: 

σz = 
2/5223 )(

2

3  zrz
Q


,    (3а) 

σr = 













   2/52222/122

22
)(3)(

1
)21(

2
zrzrzr

r

z

r

Q 


,    (3б) 
σθ = 













   2/3222/122

22
)()(

1
)21(

2
zrzzr

r

z

r

Q 


.  

(3в) 

Как видим, определяющими параметрами при 
оценке напряжений являются величина нагрузки Q 
и коэффициент Пуассона ν. 

Реализация математической модели (1)-(3) в диа-
пазоне изменения параметров Q=8-20 т и ν=0,2-0,4 
для центра приложения нагрузки (z=0) позволили 
(рисунок 1) установить характер затухания дополни-
тельных касательных напряжений τrθ, кПа по мере 
роста r, м, т.е. удаления от границы трелевочного во-
лока (технологического коридора).  

Расчеты произведены при фиксированных значе-
ниях параметров Q=14 т и ν=0,32 и различных углах 
поворота θ=10о, θ=20о, и θ=30о. 

Как следует из анализа данных рисунка 2, при 
маневрировании с большими углами поворота дви-
жителя дополнительные касательные напряжения в 
непосредственной близости от центра приложения 
нагрузки возрастают кратно. Однако, по мере удале-
ния от границы трелевочного волока (технологиче-
ского коридора) они резко снижаются по закону за-
тухающей экспоненты. На расстоянии, превышаю-
щем 0,5 м, влияние параметра θ на формирование ве-
личины τrθ снижается. 

Численные эксперименты модели (1)-(3) при z=0 
в указанных выше диапазонах изменения парамет-
ров Q=8-20 т и ν=0,2-0,4 позволили установить обоб-
щенное регрессионное уравнение для определения 
величины дополнительных касательных напряже-
ний в момент поворота движителя: 

τrθ=0,018∙Q∙cosα(1-2ν)∙(7,0178θ+0,633)∙e-4,372r. (4) 
Суммируя горизонтальные напряжения сдвига τс 

с величиной τrθ, получим результирующую вели-
чину касательных напряжений τ в направлении 
сдвигаемого массива между колеями: 

          τ=τс+τrθ.                             (5) 
При погружении колеса радиусом R в поч-

вогрунт на глубину колеи hк площадь сектора Sк вза-
имодействия колеса с массивом почвогрунта равна: 

        Sк=
ோమ

ଶ
(μ-sinμ),                        (6) 

где центральный угол μ=2arccos(1-hк/R). 
Сила сдвига Fс будет равна произведению вели-

чины τ на Sк: 

   Fс=(τс +τrθ ) 
ோమ

ଶ
 (μ-sinμ).                  (7) 

За время t воздействия силы Fс на участок сдви-
гаемого массива почвогрунта возникает импульс 
силы сдвига: 

         Iс=Fс∙t.                                 (8) 
Масса сдвигаемого массива с учетом плотности 

почвогрунта ρ равна: 
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                 Mк=ρ Lц hк LП.                          (9) 
Импульс массы тела Iм при его перемещении со 

скоростью v составит: 
                    Iм=Mк∙ v.                             (10) 

Критерием выполнения сдвига массива поч-
вогрунта между колеями в момент маневрирования 
движителя принимается условие превышение им-
пульса силы сдвига, действующей на участок мас-
сива, над импульсом его массы: 

                          Iс> Iм, н ∙ с                           (11) 
Анализ соотношений для определения величин 

импульсов силы и массы показывает, что основ-
ными факторами влияния являются глубина колеи 
hк, вес Q и коэффициент Пуассона ν, которые суще-
ственно зависят от влажности грунта W [20,21]. 

Произведем численные расчеты при следующих 
исходных данных: вес лесной машины (трелевочной 
системы) Q=14 т, радиус колеса - R=0,625 м, ско-
рость движения - v=0,6 м/с, время взаимодействия - 
t=8 c, длина пятна контакта - Lп=0,42 м, ширина 
пятна контакта – ВП=0,73 м, площадь пятна контакта 
– SП=0,3066 м2, площадь сектора взаимодействия - 
Sк=0,41 м2 (1/3 площади колеса). 

Грунт - влажный суглинок с модулем общей де-
формации Е=1 МПа, плотностью ρ=1100 кг/м3, соот-
ветствующей коэффициенту пористости 0,7 и влаж-
ности Wп=28%, равной ее пределу пластичности. 
При иной влажности грунта W плотность корректи-
ровалась в соответствии с коэффициентом пропор-
циональности λW: 

             λW =
ଵାௐ/ଵ଴଴

ଵାௐп/ଵ଴଴
  .                       (12) 

На рисунке 3 для влажности грунта W=35% и 
принятых исходных данных в результате выполнен-
ных расчетов показано влияние угла поворота θ, о на 
величину глубины колеи hк, м.  

Полученные результаты свидетельствуют о том, 
что существенный относительный рост hк наблюда-
ется при малых углах поворота до 10о (с 0,26 до 0,32 
м) и по достижении θ уровней 15 и более  градусов 
увеличение hк происходит асимптотически.  

Этот результат позволяет сделать предположе-
ние о том, что с ростом маневрирования импульс 
силы сдвига массива почвогрунта будет доминиро-
вать над импульсом его массы, что является пози-

тивным фактором в контексте решения поставлен-
ной проблемы повышения проходимости движителя 
при образовании глубокой колеи. 

Важной характеристикой процесса упругопла-
стического деформирования влажного почвогрунта 
с внутренним трением является коэффициент Пуас-
сона ν, который зависит от влажности почвогрунта 
W. 

На рисунке 3 представлены зависимости ν от W, 
%, где: кривая 1 – данные аппроксимации результа-
тов исследований в работе [22] лабораторных испы-
таний [23] на образцах грунтов различной влажно-
сти; прямая 2 – расчетная, полученная как 1/100 от 
показателя W, %.  

Как установлено, относительная погрешность 
оценки ν не выходит за пределы 3,5-4,5%. 

На рисунке 5 а при маневрировании движителя с 
углом поворота θ=10о показано влияние W (ось абс-
цисс, %) на значения (ось ординат, н ∙с) импульсов 
массы Iм - линия 1 и силы Iс - линия 2. 

Как видно из рисунка 5 а во всем диапазоне из-
менения влажности условие (11) сдвига массива 
почвогрунта не выполняется. 

Увеличив угол поворота θ до 20о (рисунок 4 б), 
условие (11) выполняется при любой влажности в  
диапазоне от ее предела пластичности Wп=25-28% 
до предела текучести WТ=36-40%, причем с ростом 
W превышение импульса силы над импульсом массы 
растет, т.е. вероятность сдвига массива почвогрунта 
увеличивается. 

Полученные результаты позволяют ввести без-
размерный критерий эффективного сдвига, равный 
отношению импульсов: 

                         𝐺 =  
ூс

ூм
.                                       (13) 

Условие (11) соответствует условию: 
                               𝐺 >1.                                 (14) 

На рисунке 6 при принятых исходных данных и 
фиксированной влажности почвогрунта W=32% по-
казано влияние угла поворота θ, на величину крите-
рия 𝐺. 

Как видим, при маневрировании с углами пово-
рота, превышающими 20 градусов, вероятнее всего, 
что массив почвогрунта между колеями будет сдви-
нут на полную ширину межколейного пространства. 
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Рисунок 1. Изменение касательных напряжений в момент поворота с удалением от границы трелевочного  

волока (технологического коридора) 
1 - θ=10о; 2 - θ=20о; θ=30о 

Figure 1. Change in tangential stresses at the moment of rotation with distance from the boundary of the skidding  
portage (technological corridor) 

1 - θ=10о; 2 - θ=20о; θ=30о 
Источник: собственная композиция авторов 

Source: author’s composition 
 

     На рисунке 1 математическое моделирования 
подтвердило экспоненциальный характер затухания 
касательных напряжений τrθ с высокой точностью 
аппроксимации 𝑅ଶ > 0,98, при удалении от точки 
контакта движителя с грунтом. При увеличение угла 
поворота 𝜃 с 10 о до 30 о возрастает пиковое напря-
жение в 3 раза с 6,2 до 18,4 кПа., однако угол пово-
рота движителя 𝜃 = 20° показывает усиленное  за-
тухание и коэффициент затухания равняется 𝑘 =

5.752 мିଵ, что снижает сдвиг почвы на расстояниях 
r > 0,3 м. Оптимальные результаты по минимиза-
ции колеи ℎ௞ ≤ 0,26 м и обеспечиванию условия 
сдвига 𝐼с  > 𝐼м достигнуты при 𝜃 = 25 − 30°, где со-
четается высокая амплитуда напряжений и умерен-
ный коэффициент затухания 𝑘 = 4.372 мିଵ,  осу-
ществляя равномерное  деформирование межколей-
ного пространства.   
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Рисунок 2. Влияние угла поворота движителя на глубину колеи 

Figure 2. The effect of the angle of rotation of the propulsor on the depth of the track  
Источник: собственная композиция авторов 

Source: author’s composition 
 

Анализ экспериментальных данных, представ-

ленных на рисунке 2, выявил выраженную логариф-

мическую зависимость глубины образующейся ко-

леи (hк) от угла поворота движителя (θ). Полученная 

зависимость аппроксимируется уравнением регрес-

сии: 

hк = 0.0315 · ln(θ) + 0.2515 

с высоким коэффициентом детерминации R² = 

0.8574, что свидетельствует об адекватности вы-

бранной математической модели. 

Динамика процесса характеризуется двумя от-

четливыми режимами: 

При малых углах поворота (θ < 10°) наблюдается 

интенсивный рост глубины колеи до значений по-

рядка 0.32 м. Данное явление обусловлено возник-

новением недостаточных касательных напряжений 

в контактной зоне (τ_rθ ≤ 6.2 кПа), при которых кри-

терий сдвига I_с не превышает порогового значения 

I_м (I_с < I_м). Это приводит к нарушению сплош-

ности сдвига грунта и его активному накоплению в 

межколейном пространстве. 

При углах поворота θ ≥ 15° кинетика процесса 

кардинально меняется: рост глубины колеи суще-

ственно замедляется. При θ=20° и θ=30° величина hк 

достигает значений 0.33 м и 0.35 м соответственно. 

Подобная трансформация механизма взаимодей-

ствия объясняется значительным увеличением каса-

тельных напряжений (τ_rθ = 12.4–18.4 кПа), что 

обеспечивает выполнение условия эффективного 

сдвига: I_с > I_м. 

Проведенный анализ позволяет идентифициро-

вать маневрирование с углами поворота менее 10° 

как критический режим, провоцирующий быстрое 

развитие колеи, в особенности на переувлажненных 

грунтах. Напротив, диапазон углов θ = 15°–25° мо-

жет быть определен как операционно-оптимальный, 

обеспечивающий баланс между минимизацией глу-

бины колеи и поддержанием эффективного сило-

вого взаимодействия с грунтом. 
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Рисунок 3. Зависимость коэффициента Пуассона от влажности W: 

1 – данные аппроксимации результатов исследований в работе [5] лабораторных испытаний [6] на образцах 
грунтов различной влажности; 2 – расчетная, полученная как 1/100 от показателя W, % 

Figure 3. Dependence of the Poisson's ratio on humidity W:  
1 – approximation data of the research results in [5] laboratory tests [6] on soil samples of various humidity;  

2 – calculated as 1/100 of the indicator W, % 
Источник: собственная композиция авторов 

Source: author’s composition 

 

На рис. 3 представлена зависимость коэффици-

ента Пуассона (ν) исследуемого грунта от его влаж-

ности (W). Экспериментально установленная зави-

симость имеет нелинейный S-образный характер, 

что свидетельствует о существенном расхождении с 

упрощенной линейной моделью. 

Анализ показал, что при малых углах поворота 

управляемых колес (θ < 10°) применение линейной 

аппроксимации для прогнозирования сдвиговых де-

формаций приводит к систематическому завыше-

нию оценки на 8–15%. Данная методическая по-

грешность нивелирует учет дефицита импульса 

силы, вследствие чего расчетная глубина колеи (hк) 

может достигать 0,31 м. Указанное явление пред-

ставляет наибольшую опасность при эксплуатации 

на склоновых территориях и переувлажненных 

грунтах. 

При увеличении угла поворота до θ ≥ 20° манев-

рирование индуцирует рост касательных напряже-

ний в контактном слое до значений 12–18 кПа. Дан-

ный режим обеспечивает выполнение критерия пре-

вышения импульса силы над импульсом момента (Iс 

> Iм), что лимитирует углубление колеи диапазоном 

0,31–0,35 м. 
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Рисунок 4. Зависимости импульса силы и импульса массы от влажности: 

1 - импульс массы Iм; 2 - импульс силы Iс 
Figure 4. Force pulse and mass pulse dependences on humidity:  

1 - momentum of mass Iм; 2 - momentum of force Iс 

 

Анализ зависимостей импульсов силы 𝐼с  и массы 

𝐼м от влажности грунта 𝑊 (рисунок 4) подтвер-

ждает, что эффективность сдвига межколейного 

массива критически зависит от угла поворота дви-

жителя θ. При малых углах поворота 𝜃 < 10° им-

пульс силы 𝐼с  сохраняет инвариантность к измене-

нию влажности почвы, тогда как импульс массы 𝐼м 

возрастает с 68 до 80 Н∙ с при росте влажности от 

25% до 35%, что увеличивают глубину колеи до 0.31 

м. При углах 𝜃 > 20° нелинейный рост импульсов 

силы 𝐼с с 110 до 125 Н∙ с компенсируются увеличе-

нием импульсом массы 𝐼м с 105 до 130 Н∙ с, что кор-

релируют с фиксацией глубины колеи на уровне 

0,33 м. Для переувлажнённых грунтов 𝑊 > 30° ма-

невры с углом поворота движителя 𝜃 < 15° недопу-

стимы из-за риска глубины колеи ℎ௞, тогда как 𝜃 =

 25° − 30° обеспечивает управление сдвигом даже 

при 𝑊 = 35%, что подтверждает ключевую роль 

угла поворота в компенсации негативного влияния 

влажности.
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Обсуждение 

Результаты исследований показывают, что уве-
личение веса Q с одной стороны приводит к росту 
глубины колеи, массы сдвигаемого массива поч-
вогрунта и, соответственно, ее импульса, а с другой 
- способствует увеличению касательных напряже-
ний и импульса силы сдвига. 

На рисунке 6 для фиксированного значения 
θ=10о показано влияние Q (ось абсцисс, т) на изме-
нение критерия 𝐺 (ось ординат). 

Как видим, при незначительных углах поворота 
требуется большая нагрузка на массив почвогрунта 
для его сдвига в сторону от направления трелевоч-
ного волока (технологического коридора). 

При меньшей нагрузке требуется более высокая 
маневренность в соответствии с данными рисунка 5. 

Результаты исследования (рисунок 7) совмест-
ного влияния угла поворота движителя θ, ° и его веса 
Q, т на величину критерия сдвига G свидетель-
ствуют о том, что чем более высокую нагрузку ока-
зывает лесная машина или трелевочная система на 
почвогрунт, тем более значительное маневрирова-
ние необходимо для выполнения эффективной 
транспортной работы в сложных геотехнических 
условиях. 

При многократных проходах лесной машины 
или трелевочной системы по одному и тому же 
участку колеи происходят:  

1) циклическое уплотнение почвы в соответ-
ствии с прогнозными моделями [24] и  

 2) асимптотическое увеличение глубины колеи в 
соответствии с количественными оценками [25]. 

Основываясь на указанных методических поло-
жениях [24,25] и разработанных соотношениях (1)-
(14) произведены расчеты показателей взаимодей-
ствия шины лесной машины с массивом поч-
вогрунта между колеями при увеличении числа про-
ходов с 1 до 4.  

Расчеты соответствуют следующим исходным 
данным: влажность почвогрунта W=32%, нагрузка 
на почвогрунт Q=17 т, глубина колеи после первого 
прохода (N=1) при θ=0о равна hк=0,26 м. 

В таблицу 1 сведены данные глубины колеи hк, 
м, импульсов массы Iм и силы Iс, кН∙ с. 

На основании данных таблицы 1 определены (ри-
сунок 7) значения критерия G по мере увеличения 
циклов прохода N. 

Данные таблицы 1 и рисунка 7 позволяют произ-
вести сравнительный анализ трех случаев:  

первый – практически прямолинейное движение 
в условиях минимального маневрирования движи-
теля (с углом поворота θ не более 5о – линия 1),  

второй и третий - при маневрировании соответ-
ственно с θ=10о – линия 2 и θ=15о – линия 3. 

 

 
Рисунок 5. Влияние угла поворота движителя на величину критерия сдвига 

Figure 5. The effect of the angle of rotation of the propulsor on the value of the shear criterion 
Источник: собственная композиция авторов 

Source: author’s composition 
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Рисунок 6. Влияние величины нагрузки на величину критерия сдвига 

Figure 6. Influence of the load value on the value of the shear criterion 
Источник: собственная композиция авторов 

Source: author’s composition 

Таблица 1. Результаты численного моделирования показателей взаимодействия лесной машины или трелевоч-
ной системы с массивом почвогрунта между колеями 

Table 1. Results of numerical modeling of the interaction of a forest machine or a skidding system with an array of soil 
between the tracks 

N θ=5о θ=10о θ=15о 
hк Iм Ic hк Iм Ic hк Iм Iс 

1 0,29 0,11 0,10 0,31 0,12 0,13 0,33 0,13 0,16 
2 0,34 0,16 0,13 0,37 0,17 0,16 0,39 0,18 0,19 
3 0,37 0,19 0,15 0,40 0,20 0,18 0,42 0,21 0,22 

4 0,39 0,21 0,16 0,42 0,23 0,19 0,44 0,24 0,23 
Источник: собственные вычисления авторов 

Source: own calculations 
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Рисунок 7. Влияние цикличности на изменение величины критерия сдвига 

Figure 7. The effect of cyclicity on the change in the magnitude of the shift criterion 
 

Заключение 

Проведенное исследование позволило раз-
работать теоретически обоснованные рекомендации 
по повышению проходимости колесных лесных ма-
шин на переувлажненных грунтах за счет оптимиза-
ции режимов маневрирования движителя. Установ-
лено, что: 
1. Маневрирование с углами поворота 15-20° и бо-

лее обеспечивает формирование достаточных 
касательных напряжений для эффективного 
сдвига межколейного массива грунта. 

2. Разработанный критерий эффективности 
сдвига, основанный на соотношении импульсов 
силы и массы, позволяет количественно оце-
нить вероятность разрушения межколейного 
пространства. 

3. Многократные проходы техники по одному 
участку требуют увеличения углов маневриро-
вания для поддержания работоспособности тре-
левочных волоков. 

4. Полученные результаты позволяют минимизи-
ровать глубину колеи (до 0,33-0,35 м) даже при 
высокой влажности грунта (до 35%) и много-
кратных проходах техники. 

Результаты исследования имеют практическую зна-
чимость для операторов лесозаготовительной тех-
ники и могут быть использованы при разработке ру-
ководств по эксплуатации машин в сложных грунто-
вых условиях, что позволит снизить экологический 
ущерб и повысить эффективность лесозаготовитель-
ных работ. 
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