Voronezh, Voronezh, Russian Federation
from 01.01.2017 until now
Voronezh, Voronezh, Russian Federation
Voronezh, Voronezh, Russian Federation
Anthropogenic factors of forest fire risk are decisive in the occurrence of a fire hazardous situation in forests, since more than 90% of forest fires occur due to human fault. However, this group of factors is not fully taken into account when determining the class of natural fire hazard. The main reason for the superficial consideration of the above factors in forest stands is the complexity of their definition and control. In this regard, the aim of the work is to develop elements of technological solutions aimed at assessing and taking into account anthropogenic risk factors for the occurrence of a fire hazardous situation in forests to improve the system of remote forest fire monitoring. The ob-jects of the study were forest stands growing in the territory of the Central forest-steppe, characterized by the predomi-nance of Scots pine. When assessing anthropogenic forest fire risks, the location and size of settlements, the presence of points of interest of the population as well as road network parameters that affect the occurrence of fires were ana-lyzed. As a result of the work, a methodical approach to determining anthropogenic factors of forest fire risk on a re-mote basis was proposed in order to adjust the class of natural fire hazard in forests. The zones of influence of the road and path network, recreational facilities and settlements on forest plantations growing in the Central forest-steppe were determined. It was determined that about half of all fires in the studied objects occur at a distance of up to 50 m from roads that allow free movement of the population. It was found that the existing forest fire monitoring system, despite the use of modern means, requires improvement taking into account the identified relationships. It is recommended to further study the impact of various types of recreational load on the condition of forest stands and to develop targeted measures to reduce fire risks associated with population visits to forests.
forest fire monitoring, forest ecosystems, anthropogenic impact, forest protection, remote sensing methods
1. Labenski P., Ewald M., Schmidtlein S., Ewald Fassnacht F. Classifying surface fuel types based on forest stand photographs and satellite time series using deep learning // International Journal of Applied Earth Observation and Geoinformation 29 April – 2022. R.102799. DOI: https://doi.org/10.1016/j.jag.2022.102799. URL: https://elibrary.ru/item.asp?id=57484910.
2. Plotnikova A.S. Shkala prirodnoy pozharnoy opasnosti lesnykh ekosistem [Scale of natural fire danger of forest ecosystems I.S. Melekhova] I.S. Melekhova. Obzor sovremennykh rossiyskikh metodicheskikh podkhodov Vo-prosy lesnoy nauki = Review of modern Russian methodological approaches. Questions of forest science. 2021;(4): 1–13. (In Russ.). DOI:https://doi.org/10.31509/2658-607x-202142-2. URL: https://www.elibrary.ru/item.asp?id=46456855.
3. Zharinov S.N., Golubeva E.I., Zimin M.V. Kontseptual'nye osnovy organizatsii okhrany lesov ot pozharov [Conceptual foundations of forest fire protection organization]. Voprosy lesnoy nauki. Questions of forest science. 2020; (3): 1-8. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=44304728. DOI:https://doi.org/10.31509/2658-607x-2020-3-3-1-8.
4. Ivanov S.A. Sistemnyy analiz faktorov, vliyayushchikh na vozniknovenie lesnykh pozharov v Severo-Zapadnom federal'nom okruge [A systematic analysis of the factors influencing the occurrence of forest fires in the North-Western Federal District]. Vestnik Astrakhanskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Up-ravlenie, vychislitel'naya tekhnika i informatika = Bulletin of the Astrakhan State Technical University. Series: Man-agement, Computer Engineering and Computer Science. 2022; 4: 26–34. (In Russ.). URL: https://www.elibrary.ru/item.asp?id=49602614. DOI:https://doi.org/10.24143/2073-5529-2022-4-26-34.
5. Slavskiy V.A., Matveev S.M., Mironenko A.V., Litovchenko D.A. Sovershenstvovanie metodologii dis-tantsionnogo monitoringa pozharnoy opasnosti v lesakh [Improving the methodology of remote monitoring of fire danger in forests]. Trudy Sankt-Peterburgskogo nauchno-issledovatel'skogo instituta lesnogo khozyaystva = Proceed-ings of the St. Petersburg Scientific Research Institute of Forestry. (In Russ.). 2024;3: 113–131. URL: https://elibrary.ru/item.asp?id=80257732. DOI:https://doi.org/10.21178/2079-6080.2024.3.113.
6. Kotel'nikov R.V., Chugaev A.I. Sravnitel'naya otsenka kachestva indeksov pozharnoy opasnosti v lesakh. [Comparative assessment of the quality of fire hazard indices in forests] Sibirskiy lesnoy zhurnal = Siberian Forest Magazine. 2023;6: 32-38. (In Russ.). – URL: https://elibrary.ru/item.asp?id=59061148. DOI:https://doi.org/10.15372/SJFS20230604.
7. Belov A.N. Lesnye pozhary kak ugroza pozharnoy bezopasnosti: sovremennoe sostoyanie i preduprezhde-nie. [Forest fires as a threat to fire safety: current status and prevention].Vestnik ekonomiki, upravleniya i prava = Bul-letin of Economics, Management and Law. 2023;(16): 62-70. (In Russ.). URL: https://elibrary.ru/item.asp?id=54031823.
8. TASS. Lesnye pozhary v Rossii. Statistika i antirekordy. [Forest fires in Russia. Statistics and anti-records]. (In Russ.). URL: https://tass.ru/info/6712527 (data obrashcheniya 12.03.2025).
9. Balch J. K. et al. From the Cover: Human-started wildfires expand the fire niche across the United States. Proceedings of the National Academy of Sciences of the United States of America. 2017;(114): 11: 29-46. DOI: https://doi.org/10.1073/pnas.1617394114
10. Turco M. et al. Anthropogenic climate change impacts exacerbate summer forest fires in California. Pro-ceedings of the National Academy of Sciences. 2023;(120): 25. e2213815120. DOI: https://doi.org/10.1073/pnas.2213815120. URL: https://elibrary.ru/item.asp?id=61915205.
11. Reis M., Mauricio P.L., Yanai A., Pacheco Ramos C.J. Forest fires and deforestation in the central Ama-zon: Effects of landscape and climate on spatial and temporal dynamics. Journal of Environmental Management. 2021; 288(1): 112310. DOI: https://doi.org/10.1016/j.jenvman.2021.112310. URL: https://elibrary.ru/item.asp?id=72975111.
12. Dutta R., Das A., Aryal J. Big data integration shows Australian bush-fire frequency is increasing signifi-cantly. R. Soc. Open Sci. 2020;3: 150241. DOI: https://doi.org/10.1098/rsos.150241. URL: https://elibrary.ru/item.asp?id=27073890.
13. Shterenzon V. A, Khudyakova S. A., Stepanov O. I., Grenaderov A. N. Faktory pozharnoy opasnosti re-gionov Rossiyskoy Federatsii. [Fire hazard factors in the regions of the Russian Federation]. Tekhnosfernaya bezopas-nost = Technosphere safety. 2020;4(29): 89-101. (In Russ.). URL: https://elibrary.ru/item.asp?id=44511453.
14. Slavskiy V., Litovchenko D. Matveev S. Sheshnitsan S. Larionov M.V Assessment of Biological and Envi-ronmental Factors Influence on Fire Hazard in Pine Forests: A Case Study in Central Forest-Steppe of the East Euro-pean Plain. Land. 2023;12: 103. DOI:https://doi.org/10.3390/land12010103. URL: https://elibrary.ru/item.asp?id=50389254.
15. Slavskiy V., Matveev S., Sheshnitsan S., Litovchenko D., Larionov M.V., Shokurov A., Litovchenko P., Durmanov N. Assessment of Phytomass and Carbon Stock in the Ecosystems of the Central ForestSteppe of the East European Plain: Integrated Approach of Terrestrial Environmental Monitoring and Remote Sensing with Unmanned Aerial Vehicles. Life. 2024;14: 632. DOI:https://doi.org/10.3390/life14050632. URL: https://elibrary.ru/item.asp?id=67646001.
16. Slavskiy V.A., Mironenko A.V., Matveev S.M., Litovchenko D.A. Taksatsionno-deshifrovochnye poka-zateli nasazhdeniy kak osnova razrabotki modeley mashinnogo obucheniya dlya distantsionnogo monitoringa lesov. [Taxation and decoding indicators of plantings as a basis for the development of machine learning models for remote monitoring of forests]. Trudy Sankt-Peterburgskogo nauchno-issledovatel'skogo instituta lesnogo khozyaystva = Pro-ceedings of the St. Petersburg Scientific Research Institute of Forestry. 2022;4: 99-114. (In Russ.). DOI:https://doi.org/10.21178/2079-6080.2022.4.99. URL: https://elibrary.ru/item.asp?id=50176282.
17. Shin J., Temesgen H., Strunk J.L., Hilker T. Comparing Modeling Methods for Predicting Forest Attributes Using LiDAR Metrics and Ground Measurements. Can. J. Remote Sens. 2016; 42: 739–765. DOI: https://doi.org/10.1080/07038992.2016.1252908.
18. Eliseev A.V., Vasil'eva A.V. Prirodnye pozhary: dannye nablyudeniy i modelirovaniya. [Natural fires: ob-servational and modeling data]. Fundamental'naya i prikladnaya klimatologiya = Fundamental and applied climatol-ogy. 2020;(3): 27-35. (In Russ.). DOI:https://doi.org/10.21513/2410-8758-2020-3-73-119. URL: https://elibrary.ru/item.asp?id=44336347.
19. Gizatullin A.T. Geoinformatsionnoe modelirovanie pozharnoy opasnosti prirodnykh territoriy Rossii. [Geoinformation modeling of fire danger in natural areas of Russia]. diss. na soi. kan. geog. n = diss. on soi. kan. geog. n. – Moskva. 2023: 182. (In Russ.). URL: https://elibrary.ru/item.asp?id=59955827.
20. Abedi Gheshlaghi H., Feizizadeh B., Blaschke T. GIS-based forest fire risk mapping using the analytical network process and fuzzy logic. J. Environ. Plan. Manag. 2020;63: 481–499. DOI: https://doi.org/10.1080/09640568.2019.1594726.
21. Mironenko A.V., Matveev S.M., Slavskiy V.A., Vodolazhskiy A.N., Litovchenko D.A. Algoritm aktual-izatsii lesoustroitel'noy informatsii i ego aprobatsiya v Voronezhskoy oblasti. [The algorithm for updating forest management information and its testing in the Voronezh region]. Trudy Sankt-Peterburgskogo nauchno-issledovatel'skogo instituta lesnogo khozyaystva № 4 = Proceedings of the St. Petersburg Scientific Research Institute of Forestry №4. 2022: 85-98. (In Russ.). DOIhttps://doi.org/10.21178/2079-6080.2022.4.85. URL: https://elibrary.ru/item.asp?id=50176281.
22. Svidetel'stvo o gosudarstvennoy registratsii programmy dlya EVM № 2022681551 Rossiyskaya Federatsi-ya. Programma dlya sistematizatsii naborov eksperimental'nykh dannykh lesovodstvenno-taksatsionnykh priznakov lesnykh nasazhdeniy: № 2022681518. [A program for systematization of experimental data sets of forestry and taxa-tion characteristics of forest plantations]. zayavl. 15.11.2022 : opubl. 15.11.2022. A. V. Mironenko, S. M. Matveev, V. A. Slavskiy; zayavitel' Federal'noe gosudarstvennoe byudzhetnoe obrazovatel'noe uchrezhdenie vysshego obra-zovaniya "Voronezhskiy gosudarstvennyy lesotekhnicheskiy universitet imeni G.F. Morozova" = applicant Voronezh State University of Forestry and Technologies named after G.F. Morozov. (In Russ.). URL: https://elibrary.ru/item.asp?id=49780865.



