Crack formation in natural and pressure-modified silver birch (Betula pendula Roth) wood: the effect of the internal friction index under the influence of external disturbances
Abstract and keywords
Abstract (English):
Obtaining information about the presence of cracks in raw materials, blanks and wood products is neces-sary to make a decision on the purposes of its subsequent processing and operation. The method for diagnosing cracks in wood is based on measuring internal friction. For prepared samples of natural and modified wood, sawn from the stem part of drooping birch (Betula pendula Roth) trees growing in Khlevensky Forestry, Lipetsk region. (52.184130, 39.110463, ASL 157m), exposed to radial and tangential directions with ultrasound (frequency 24.5 kHz, exposure 0-20 minutes, step 5 minutes) and pulsed magnetic field (strength - 0.3 T, exposure 0-2 minutes, step 0.5 minutes). Next, the internal friction of the samples was studied on an experimental setup by measuring the logarithmic damping decrement based on free-bending vibrations. The absolute values of the dimensionless coefficient of internal friction Q-1, as the main structural parameter for samples of natural and modified wood, were obtained at a significance level of p=0.95: for humidity, in the presence of one crack, Q-1 decreased by 7.04% (D=0.08), in the presence of two cracks - by 8.4% (D=0.15), in the presence of three cracks - by 9.06% (D=0.15); for ultrasound in the presence of one crack Q-1 decreased by 7.17% (D=0.05), in the presence of two cracks - by 8.46% (D=0.05), in the presence of three cracks - by 9.12% (D=0.09); for a pulsed magnetic field in the presence of one crack Q-1 decreased by 7.14% (D=0.05), in the presence of two cracks - by 8.39% (D=0.09), in the presence of three cracks - by 9.02% (D=0.09). When testing the samples of natural wood and pressure-modified drooping birch (Betula pendula Roth) wood, we obtained an asymptotic equation was obtained for ap-proximating the dependence of the decrease in Q-1 on the number of cracks, with the approximation value R2=0.994. The study of the dependence of internal friction on the process of crack formation in various types of wood provides preparation for the next stage - the construction of a prototype system for non-destructive testing of defects.

Keywords:
internal friction of wood, diagnostics of cracks in wood, natural and modified wood, drooping birch (Betula pendula Roth), ultrasound, pulsed magnetic field
Text
Publication text (PDF): Read Download
References

1. Dahle S., Pilko M., Žigon J., Zaplotnik R., Petrič M., Pavlič M. Predvaritel'naya plazmennaya obrabotka poverhnosti bar'ernym razryadom s otkrytym ishodnym kodom dlya umen'sheniya rastreskivaniya naruzhnyh derevyannyh pokrytiy. Cellyuloza. 2021; 28(12): 8055-8076. DOI: https://doi.org/10.1007/s10570-021-04014-2

2. Abdollahzade Dzhamalabadi M.Yu. Optimal'nyy pryamougol'nyy risunok treschiny na osnove konstruktivnyh teoriy, nasyscheniya treschin i minimizacii energii dlya naneseniya risunka na derevo. Haos, solitony i fraktaly. 2022; 160: 112242. DOI: https://doi.org/10.1016/j.chaos.2022.112242

3. Chay Yuan', Tao Sin', Lyan Shancin, Fu Fen Poluchenie i harakteristika svoystv metallicheskih kompozitov na osnove drevesiny s zapolneniem treschin metodom mikrovolnovogo vspuchivaniya. 2021; 43: 118-125. DOI: http://j.bjfu.edu.cn/cn/article/doi/10.12171/j.1000-1522.20210209

4. Zeltiņš P., Katrevičs J., Gailis A., Maaten T., Bāders E., Jansons Ā. Vliyanie diametra stvola, genetiki i svoystv drevesiny na rastreskivanie stvola eli norvezhskoy. Lesa. 2018; 9(9): 546. DOI: https://doi.org/10.3390/f9090546

5. Mezui E.N., Nzengui K.F.P., Pitti R.M., Ikogu S., Ango S. E., Talla P.K. Issledovaniya deformaciy i treschin na srezah drevesiny tropicheskoy zeleni pri estestvennoy sushke: eksperimental'nye i chislennye podhody. Evropeyskiy zhurnal drevesiny i izdeliy iz dereva. 2022; 81(1): 187-207. DOI:https://doi.org/10.1007/s00107-022-01881-9

6. Fu Z., Chen Dzh., Chzhan Yu., Se F., Lu Yu. Obzor deformacii i rastreskivaniya drevesiny pri potere vlagi. Polimery.. 2023; 15(15): 3295. DOI: https://doi.org/10.3390/polym15153295

7. Botter-Kyuish H.P., Van den Bul'ke Dzh., Betens Dzh.M., Van Aker Dzh. Vzlamyvanie koda: monitoring vysyhaniya drevesiny i vozniknoveniya treschin v rezhime real'nogo vremeni. Nauka i tehnologiya derevoobrabotki. 2020; 54(4): 1029-1049. DOI: https://doi.org/10.1007/s00226-020-01200-6

8. He Dzh., She Yu., Li M., Cay G., Hu B. Eksperimental'noe issledovanie haraktera razvitiya treschin v drevesine sosny s razlichnym soderzhaniem vlagi. Nauchnyy zhurnal po tehnike i tehnologiyam. 2022; 10(6): 102-110. DOI: https://doi.org/10.36347/sjet.2022.v10i06.002

9. Kristoforo A.L., Penteado L.D., Kamargo M.V. de, Arroyo F.N., Santos H.F. dos, Dias A.M.P.G., Lar F.A.R. Ocenka prochnosti drevesiny pri rastyazhenii perpendikulyarno zernu po prochnosti na rastreskivanie. Elektronnyy zhurnal SSRN. 2022. DOI: http://dx.doi.org/10.2139/ssrn.4201159

10. Chzhan R., Teylor A., Haralambides M., Balint D., Yang K., Barbera D., Bleyds N. Chislennaya model' dlya prognozirovaniya vremeni vozniknoveniya treschin v derevyannyh panelyah pri malociklovoy ustalosti, vyzvannoy vozdeystviem okruzhayuschey sredy. Elektronnyy zhurnal SSRN. 2022. DOI: http://dx.doi.org/10.2139/ssrn.4295737

11. Autengruber M., Lukachevich M., Grostlinger K., Fyusl Dzh. Konechno-elementnoe prognozirovanie haraktera treschin, vyzvannyh vlagoy, dlya poperechnyh secheniy massivnoy drevesiny i kleenogo brusa, podverzhennyh vozdeystviyu real'nyh klimaticheskih usloviy. Stroitel'stvo i stroitel'nye materialy. 2021; 271: 121775. DOI: https://doi.org/10.1016/j.conbuildmat.2020.121775

12. Ostapska K., Malo K.A. Otslezhivanie traektorii treschiny s ispol'zovaniem DIC i XFEM modelirovaniya smeshannogo razrusheniya drevesiny. Teoreticheskaya i prikladnaya mehanika razrusheniya. 2021; 112: 102896. DOI: https://doi.org/10.1016/j.tafmec.2021.102896

13. Supryatna D., In B., Konopka D., Kaliske M. Anizotropnyy podhod fazovogo polya, uchityvayuschiy smeshannye rezhimy razrusheniya v derevyannyh konstrukciyah v ramkah reprezentativnogo karkasa elementov treschin. Inzhenernaya mehanika razrusheniya. 2022; 269: 108514. DOI: https://doi.org/10.1016/j.engfracmech.2022.108514

14. Zizhen G., Gun M., Li L., Mohammadi M. Eksperimental'noe issledovanie razrusheniya v smeshannom rezhime i raspredeleniya deformaciy vblizi vershiny treschiny obrazcov drevesiny, laminirovannyh kleem, s ispol'zovaniem modificirovannogo prisposobleniya arcon i korrelyacii cifrovyh izobrazheniy. Vsemirnaya konferenciya po derevoobrabotke (WCTE 2023). 2023: 111-118. DOI: https://doi.org/10.52202/069179-0015

15. Karlsson Dzh., Isaksson P. Dinamicheskoe rasprostranenie treschin v drevesnovoloknistyh kompozitah, proanalizirovannoe s pomosch'yu vysokoskorostnoy fotografii i modeli dinamicheskogo fazovogo polya. Mezhdunarodnyy zhurnal tverdyh tel i struktur. 2018; 144-145: 78-85. DOI: https://doi.org/10.1016/j.ijsolstr.2018.04.015

16. Lin Yu., Syuy Z., Chen D., Ay Z., Cyu Yu., Yuan' Yu. Obnaruzhenie treschin v drevesine na osnove seti semanticheskoy segmentacii, upravlyaemoy dannymi. Zhurnal IEEE/ CAA Automatica Sinica. 2023; 10(6): 1510-1512. DOI: https://doi.org/10.1109/JAS.2023.123357

17. Cao H., Li G. Effektivnyy metod otslezhivaniya treschin v drevesine i opredeleniya ih kolichestva na osnove tehnologii cifrovoy obrabotki izobrazheniy. 2021 13-ya Mezhdunarodnaya konferenciya po mashinnomu obucheniyu i vychisleniyam: ICMLC 2021. N'yu-York, N'yu-York, SShA: Associaciya vychislitel'noy tehniki. 2021; 304-309. DOI: https://doi.org/10.1145/3457682.3457728

18. Huan K., Li M., Fan S., Chzhao Yu., Mao F. Issledovanie vliyaniya poverhnostnyh treschin drevesiny na harakteristiki rasprostraneniya i energeticheskoe oslablenie prodol'noy akusticheskoy emissii. Issledovanie drevesiny. 2022; 67(5): 744-759. DOI: https://doi.org/10.37763/wr.1336-4561/67.5.744759

19. Tu Dzh., Chzhao D., Chzhao Dzh., Chzhao K. Eksperimental'noe issledovanie vozniknoveniya i rasprostraneniya treschin v drevesine s treschinoy LT-tipa s ispol'zovaniem metoda cifrovoy korrelyacii izobrazheniy (DIC) i akusticheskoy emissii (AE). Nauka i tehnologiya o drevesine. 2021; 55(6): 1577-1591. DOI: https://doi.org/10.1007/s00226-020-01252-8

20. Go Yu., Chzhu S., Chen Yu., Lyu D., Li D. Issledovanie na osnove akusticheskoy emissii dlya harakteristiki tochki zarozhdeniya treschin v kompozitah drevesnoe volokno / HDPE. Polimery. 2019; 11(4): 701. Doy: https://doi.org/10.3390/polym11040701

21. Reynpreht L., Shupina P. Sravnitel'naya ocenka metodov kontrolya opor iz propitannoy drevesiny: ul'trazvukovaya ocenka, ocenka soprotivleniya sverleniyu i komp'yuternaya tomografiya. Evropeyskiy zhurnal drevesiny i izdeliy iz dereva. 2015; 73(6): 741-751. DOI: https://doi.org/10.1007/s00107-015-0943-8

22. Pen L., Van H., Chzhan H., Sin' Z., Ke D., Ley Z., E K. Issledovanie vliyaniya defektov otverstiy na teploperedachu drevesiny na osnove infrakrasnoy termografii. Mezhdunarodnyy zhurnal termicheskih nauk. 2023; 191: 108295. DOI: https://doi.org/10.1016/j.ijthermalsci.2023.108295

23. Russu A.V., Shamaev V.A., Razinkov E.M., Ziemelis A. Issledovanie vnutrennego treniya natural'noy i pressovannoy drevesiny berezy (Betula pendula Roth). Lesotehnicheskiy zhurnal. 2023; 13, 1 (49), 236-256 ( na russkom yazyke). DOI: https://doi.org/10.34220/issn.2222-7962/2023.1/16. Rezhim dostupa https://elibrary.ru/item.asp?id=53814701

24. Shamaev V.A., Nikulina N.S., Medvedev I.N. Modifikaciya drevesiny: monografiya. izdanie 2-e, pererabotannoe. i dopolnitel'no Voronezh: VGLTU. 2022. 571 s. Rezhim dostupa https://elibrary.ru/item.asp?id=50026105

25. Zaripov Sh.G. Sistematizaciya faktorov, vliyayuschih na rastreskivanie pilomaterialov iz listvennicy pri sushke drevesiny. Lesnoy zhurnal, 2018; 3: 127-136. DOI:https://doi.org/10.17238/issn0536-1036.2018.3.127. Rezhim dostupa https://elibrary.ru/item.asp?id=35018828


Login or Create
* Forgot password?