employee
Voronezh, Russian Federation
employee
Voronezh, Voronezh, Russian Federation
graduate student
Voronezh, Russian Federation
UDK 630 Лесное хозяйство. Лесоводство
Forest seeds spectral data in the visible and infrared regions of electromagnetic radiation lengths quite effectively differentiate the origin, viability, types of seeds, their infestation with pests and diseases, the ability to absorb and lose water. The search for a method of seed testing that is both experimentally simple, fast and effective for predicting germination is necessary to increase the energy efficiency of forest nurseries in the production of planting material. The retrospective references systematization (N = 55, 1998-2023, terms [Scholar Query = seeds* AND (spectr* OR optic*) (properties OR features) AND analysis]) into clusters was carried out on the basis of eight performance criteria represented by rank variables. The level of similarity and difference between clusters is determined by the method of the most distant neighbors with the grouping of data by the square of the Euclidean distance. The most distant criterion from other criteria is the level of invasiveness of testing (the square of the Euclidean distance is 25, p < 0.05). Correlation analysis of nonparametric criteria indicates a direct strong interaction between the level of financial and organizational costs (Spearman coefficient ρ = 0.77; p = 0.0008), time costs and low machine learning capability (ρ = 0.725; p = 0.0008). In the future, it is planned to periodically supplement the set of systematic data to obtain an objective assessment of seed testing methods, as well as using a seed passport to evaluate the relationship of RGB spectral data of more than 1 000 individual seeds with early growth of seedlings in a post-pyrogenic experimental site of the forest landscape of the Voronezh region by example (Pinus sylvestris L. var. Negorelskaya).
forest seeds, seed spectrometric features, seed testing, seed quality, forest landscape restoration, flat-bed scanner, image capturing technique, VIS | RGB spectral data, scanning area, scanning resolution, seed’s image segmentation
1. McDonald, M.B. Computer Imaging to Improve Seed Quality Determinations / M.B. McDonald, K. Fujimura, Y. Sako et al. // Digital Imaging and Spectral Techniques: Applications to Precision Agriculture and Crop Physiology. - 2015. - P. 15-28. - Mode of access: http://doi.wiley.com/10.2134/asaspecpub66.c2.
2. Novikov, A.I. The effect of sorting Scots pine seeds by color and size on their soil germination in containers // Coniferous boreal zones. - 2019. - Vol. 37. - № 5. - P. 313-319. - URL: https://www.elibrary.ru/item.asp?id=42337219.
3. New optoelectronic systems for express analysis of seeds in forestry production / S.V. Sokolov et al. // Forestry Engineering Journal. - 2019. - Vol. 9, № 2(34). - P. 5-13. - DOIhttps://doi.org/10.34220/issn.2222-7962/2019.2/1. - https://elibrary.ru/CNXAWZ.
4. Novikov, A.I. Express analysis of forest seeds by biophysical methods - Voronezh : Voronezh State University of Forestry and Tecnologies named after G.F. Morozov, 2018. - 128 p. - URL: https://elibrary.ru/yzuzgx.
5. The effect of the individual seed mass of Negorelskaya variety Scots pine (Pinus sylvestris L.) on 30-day germination in 40-cell SideSlit growing containers / S. Rabko et al. // Forestry Engineering Journal. - 2023. - Vol. 13. - № 2. - P. 59-86. - DOI: https://doi.org/10.34220/issn.2222-7962/2023.2/4.
6. The study of spectrometric parameters of seeds as the basis for the intensification of the process of reforestation of Scots pine cultivars of the “Negorelskaya” variety : grant RCF 23-26-00228. - M. : RCF, 2023. - URL: https://elibrary.ru/jtyxux.
7. The influence of the climatic index of degree days on the vitality of 3-year-old seedlings of scots pine from seeds sorted by spectrometric properties / V.I. Malysheva et al. // Lesotehnicheskiy zhurnal. - 2022. - Vol. 12. - № 1. - P. 110-118. - DOI: https://doi.org/10.34220/issn.2222-7962/2022.1/9.
8. Rebko, S.V. The variety of common pine “Negorelskaya” in Belarus: the first, the only, unique / S.V. Rebko, L.F. Poplavskaya, V.N. Balanchuk // Forest resources - Belarusian polesie : proceedings of the international conference of young scientists, Gomel, September 24-27, 2018. - Gomel : Beldruk Printing House LLC, 2018. - P. 66-68. - URL: https://elibrary.ru/suuwhw.
9. Sviridov, L.T. The historical aspect of the problem of sorting forest seeds // Forest in the life of the Eastern Slavs: from Kievan Rus to the present day. - Gomel : FI NAS B, 2003. - P. 186-190. URL: https://elibrary.ru/tskkll.
10. Sviridov, L.T. Promising technical means for processing coniferous seeds / L.T. Sviridov, N.D. Gomzyakov // Forestry. - 2007. - Vol. 2. - P. 44-46. URL: https://elibrary.ru/hzdxmt.
11. Andivia, E. How can my research paper be useful for future meta-analyses on forest restoration plantations? / E. Andivia, P. Villar-Salvador, J.A. Oliet et al. // New Forests. - 2019. - Vol. 50. - № 2. - P. 255-266. - DOI: https://doi.org/10.1007/s11056-018-9631-y.
12. Bernardes, R.C. Deep-Learning Approach for Fusarium Head Blight Detection in Wheat Seeds Using Low-Cost Imaging Technology / R.C. Bernardes, A. De Medeiros, L. da Silva et al. // Agriculture. - 2022. - Vol. 12. - № 11. - P. 1801. - DOI: https://doi.org/10.3390/agriculture12111801.
13. Boelt, B. Multispectral imaging - a new tool in seed quality assessment? / B. Boelt, S. Shrestha, Z. Salimi et al. // Seed Science Research. - 2018. - Vol. 28. - № 3. - P. 222-228. - DOI: https://doi.org/10.1017/S0960258518000235.
14. Castro, É.B. de L. Classification of Phaseolus lunatus L. using image analysis and machine learning models / É.B. de L. Castro, R. de S. Melo, E.M. da Costa et al. // Revista Caatinga. - 2022. - Vol. 35. - № 4. - P. 772-782. - DOI: https://doi.org/10.1590/1983-21252022v35n404rc.
15. Cuzzuol, G.R.F. Relationship between N, P, and K and the quality and stem structural characteristics of Caesalpinia echinata Lam. plants / G.R.F. Cuzzuol, C.R.D. Milanez, J.M.L. Gomes et al. // Trees. - 2013. - Vol. 27. - № 5. - P. 1477-1484. - DOI: https://doi.org/10.1007/s00468-013-0894-9.
16. Dell’Aquila, A. Digital Imaging Information Technology Applied to Seed Germination Testing: A Review / A. Dell’Aquila // Sustainable Agriculture / E. Lichtfouse et al. eds. . - Dordrecht : Springer Netherlands, 2009. - P. 377-388.
17. Dornyak, O. Immersion Freezing of a Scots Pine Single Seed in a Water-Saturated Dispersion Medium: Mathematical Modelling / O. Dornyak, A. Novikov // Inventions. - 2020. - Vol. 5. - № 4. - P. 51. - DOI: https://doi.org/10.3390/inventions5040051.
18. Downie, B. Upgrading germinability and vigour of jack pine, lodgepole pine, and white spruce by the IDS technique / B. Downie, B.S.P. Wang // Canadian Journal of Forest Research. - 1992. - Vol. 22. - № 8. - P. 1124-1131. - DOI: https://doi.org/10.1139/x92-149.
19. Drapalyuk, M. 140th anniversary of the birthday of Alexander Vladimirovich Tyurin / M. Drapalyuk, A. Sivolapov, V. Bugakov, M. Razinkov // Forestry Engineering Journal. - 2023. - Vol. 12. - № 4. - P. 5-13. - DOI: https://doi.org/10.34220/issn.2222-7962/2022.4/1.
20. ElMasry, G. Recent Applications of Multispectral Imaging in Seed Phenotyping and Quality Monitoring-An Overview / G. ElMasry, N. Mandour, S. Al-Rejaie et al. // Sensors. - 2019. - Vol. 19. - № 5. - P. 1090. - DOI: https://doi.org/10.3390/s19051090.
21. Esteve Agelet, L. Limitations and current applications of Near Infrared Spectroscopy for single seed analysis / L. Esteve Agelet, C.R. Hurburgh // Talanta. - 2014. - Vol. 121. - P. 288-299. - DOI: https://doi.org/10.1016/j.talanta.2013.12.038.
22. Gallardo-Salazar, J.L. Seedling quality and survival of a true fir [Abies religiosa (Kunth) Schltdl. et Cham.] forest plantation from two provenances in central Mexico / J.L. Gallardo-Salazar, D.A. Rodríguez-Trejo, S. Castro-Zavala // Agrociencia. - 2019. - Vol. 53. - № 4. - P. 631-643.
23. Grossnickle, S. Seedling Quality: History, Application, and Plant Attributes / S. Grossnickle, J. MacDonald // Forests. - 2018. - Vol. 9. - № 5. - P. 283. - DOI: https://doi.org/10.3390/f9050283.
24. Himanen, K. Seed quality attributes in seedling production of Norway spruce (Picea abies (L.) Karst.) / K. Himanen // Dissertationes Forestales. - 2018. - Vol. 261. - P. 74. - DOI: https://doi.org/10.14214/df.261.
25. Hornberg, A. Handbook of machine vision / A. Hornberg. - Ladenburg : John Wiley & Sons, 2007. - 798 p.
26. Hu, J. Rapid evaluation of the quality of chestnuts using near-infrared reflectance spectroscopy / J. Hu, X. Ma, L. Liu et al. // Food Chemistry. - 2017. - Vol. 231. - P. 141-147. - DOI: https://doi.org/10.1016/j.foodchem.2017.03.127.
27. Ivetić, V. The role of forest reproductive material quality in forest restoration / V. Ivetić, A.I. Novikov // Forestry Engineering Journal. - 2019. - Vol. 9. - № 2. - P. 56-65. - DOI: https://doi.org/10.34220/issn.2222-7962/2019.2/7.
28. Kang, K.-S. Seed orchards (Establishment, Management and Genetics) / K.-S. Kang, N. Bilir. - Ankara, Turkey : OGEM-VAK Press, 2021. - 1-189 p.
29. Keefe, R.F. Marked, biased, filter (MBF): use of digital X-radiography and mark-recapture to partition seed lots based on sampled individual seed quality attributes / R.F. Keefe, A.S. Davis // New Forests. - 2012. - Vol. 43. - № 2. - P. 169-184. - DOI: https://doi.org/10.1007/s11056-011-9271-y.
30. Khouja, M. Lipid Profile Quantification and Species Discrimination of Pine Seeds through NIR Spectroscopy: A Feasibility Study / M. Khouja, R.N.M.J. Páscoa, D. Melo et al. // Foods. - 2022. - Vol. 11. - № 23. - P. 3939. - DOI: https://doi.org/10.3390/foods11233939.
31. Lamichhane, J.R. Abiotic and biotic factors affecting crop seed germination and seedling emergence: a conceptual framework / J.R. Lamichhane, P. Debaeke, C. Steinberg et al. // Plant and Soil. - 2018. - Vol. 432. - № 1-2. - DOI: https://doi.org/10.1007/s11104-018-3780-9.
32. Lestander, T.A. NIR spectral information used to predict water content of pine seeds from multivariate calibration / T.A. Lestander, P. Geladi // Canadian Journal of Forest Research. - 2005. - Vol. 35. - № 5. - P. 1139-1148. - DOI: https://doi.org/10.1139/x05-046.
33. Lestander, T.A. NIR spectroscopic measurement of moisture content in Scots pine seeds / T.A. Lestander, P. Geladi // The Analyst. - 2003. - Vol. 128. - № 4. - P. 389. - DOI: https://doi.org/10.1039/b300234a.
34. Li, H. Near-Infrared Spectroscopy Coupled Chemometric Algorithms for Rapid Origin Identification and Lipid Content Detection of Pinus Koraiensis Seeds / H. Li, D. Jiang, J. Cao, D. Zhang // Sensors. - 2020. - Vol. 20. - № 17. - P. 4905. - DOI: https://doi.org/10.3390/s20174905.
35. Mataruga, M. Monitoring and control of forest seedling quality in Europe / M. Mataruga, B. Cvjetković, B. De Cuyper et al. // Forest Ecology and Management. - 2023. - Vol. 546. - № August. - P. 121308. - DOI: https://doi.org/10.1016/j.foreco.2023.121308.
36. Mohan, M. Uav-supported forest regeneration: Current trends, challenges and implications / M. Mohan, G. Richardson, G. Gopan et al. // Remote Sensing. - 2021. - Vol. 13. - № 13. - DOI: https://doi.org/10.3390/rs13132596.
37. Frontier technique of creating protective forests stands around nurseries on inefficient sites: technological foundations / V. Ivetic et al. // Forestry Engineering Journal. - 2022. - Vol. 12. - № 2. - P. 115-125. - DOI: https://doi.org/10.34220/issn.2222-7962/2022.2/10.
38. Detection of Scots pine single seed in optoelectronic system of mobile grader: mathematical modeling / M. Tigabu et al. // Forests. - 2021. - Vol. 12. - № 2. - P. 240. - DOI: https://doi.org/10.3390/f12020240.
39. Novikov, A.I. About new means of forest seeds sorting in coniferous breeds [in Russian - O novykh sposobakh sortirovaniya lesnykh semyan khvoynykh porod] // Forests of Eurasia in the third millennium: Proceedings of the international conference of young scientists. - Moscow, Russian Federation, 2001. - P. 90-91. https://elibrary.ru/rxiqqj.
40. Novikov, A.I. Improvement of technology for obtaining high-quality forest seed material : advanced Doctoral Thesis. - Voronezh State University of Forestry and Technologies, 2021. - 341 p. https://elibrary.ru/jxtbsb.
41. Novikov, A.I. Some technological features of the sorting devices and development trends // Forest and youth VSAFE - 2000: proceedings of the anniversary scientific conference of young scientists dedicated to 70-th anniversary of VSAFE. - Voronezh, Russian Federation, 2000. - P. 53-60. https://elibrary.ru/snisit.
42. Novikov, A.I. Visible wave spectrometric features of Scots pine seeds: the basis for designing a rapid analyzer / A.I. Novikov // IOP Conference Series: Earth and Environmental Science. - 2019. - Vol. 226. - № 1. - P. 012064. - DOI: https://doi.org/10.1088/1755-1315/226/1/012064.
43. Mechanization of coniferous seeds grading in Russia: a selected literature analysis / B.T. Ersson et al. // IOP Conference Series: Earth and Environmental Science. - 2020. - Vol. 595. - P. 012060. - DOI: https://doi.org/10.1088/1755-1315/595/1/012060.
44. The effect of seed coat color grading on height of one-year-old container-grown Scots pine seedlings planted on post-fire site / V. Ivetić et al. // IOP Conference Series: Earth and Environmental Science. - 2019. - Vol. 226. - P. 012043. - DOI: https://doi.org/10.1088/1755-1315/226/1/012043.
45. Scots pine seedlings growth dynamics data reveals properties for the future proof of seed coat color grading conjecture / V. Ivetić et al. // Data. - 2019. - Vol. 4. - № 3. - P. 106. - DOI: https://doi.org/10.3390/data4030106.
46. Dickson Quality Index: relation to technological impact on forest seeds / S. Rabko et al. // Forestry Engineering Journal. - 2023. - Vol. 13. - № 1. - P. 23-36. - DOI: https://doi.org/10.34220/issn.2222-7962/2023.1/2.
47. Performance of Scots pine seedlings from seeds graded by colour / M.V. Drapalyuk et al. // Forests. - 2019. - Vol. 10. - № 12. - P. 1064. - DOI: https://doi.org/10.3390/f10121064.
48. Aerial seeding of forests in Russia: A selected literature analysis / B.T. Ersson et al. // IOP Conference Series: Earth and Environmental Science. - 2019. - Vol. 226. - № 1. - P. 012051. - DOI: https://doi.org/10.1088/1755-1315/226/1/012051.
49. Novikova, T.P. Economic evaluation of mathematical methods application in the management systems of electronic component base development for forest machines / T.P. Novikova, A.I. Novikov // IOP Conference Series: Earth and Environmental Science. - 2019. - Vol. 392. - № 1. - P. 012035. - DOI: https://doi.org/10.1088/1755-1315/392/1/012035.
50. Reforestation pipeline: case for quality management of NIR-region grading of Scots pine seeds and FLR-algorithm for information processing / E.P. Petrishchev et al. // Silva Balcanica. - 2023. - Vol. 24. - № 3. - DOI: https://doi.org/10.3897/silvabalcanica.24.e114699.
51. The Root Collar Diameter Growth Reveals a Strong Relationship with the Height Growth of Juvenile Scots Pine Trees from Seeds Differentiated by Spectrometric Feature / C.B. Mastrangelo et al. // Forests. - 2023. - Vol. 14. - № 6. - P. 1164. - DOI: https://doi.org/10.3390/f14061164.
52. Ozbey, A. Block effect on genetic parameters in a 23-year-old progeny trial of Pinus brutia / A. Ozbey, N. Bilir // Forestry Engineering Journal. - 2022. - Vol. 12. - № 2. - P. 5-13. - DOI: https://doi.org/10.34220/issn.2222-7962/2022.2/1.
53. Royer-Tardif, S. Revisiting the Functional Zoning Concept under Climate Change to Expand the Portfolio of Adaptation Options / S. Royer-Tardif, J. Bauhus, F. Doyon et al. // Forests. - 2021. - Vol. 12. - № 3. - P. 273. - DOI: https://doi.org/10.3390/f12030273.
54. Saha, R. Integrated assessment of adventitious rhizogenesis in Eucalyptus: root quality index and rooting dynamics / R. Saha, H.S. Ginwal, G. Chandra, S. Barthwal // Journal of Forestry Research. - 2020. - Vol. 31. - № 6. - P. 2145-2161. - DOI: https://doi.org/10.1007/s11676-019-01040-6.
55. Santos, C.C. Morphophysiology and quality of Alibertia edulis seedlings grown under light contrast and organic residue / C.C. Santos, A. Goelzer, O.B. da Silva et al. // Revista Brasileira de Engenharia Agrícola e Ambiental. - 2023. - Vol. 27. - № 5. - P. 375-382. - DOI: https://doi.org/10.1590/1807-1929/agriambi.v27n5p375-382.
56. Sokolov, S. V. How to increase the analog-to-digital converter speed in optoelectronic systems of the seed quality rapid analyzer / S. V. Sokolov, V. V. Kamenskij, V. Ivetić // Inventions. - 2019. - Vol. 4. - № 4. - P. 61. - DOI: https://doi.org/10.3390/inventions4040061.
57. Sokolov, S.V. New optoelectronic systems for express analysis of seeds in forestry production / S.V. Sokolov et al. // Forestry Engineering Journal. - 2019. - Vol. 9. - № 2. - P. 5-13. - DOI: https://doi.org/10.34220/issn.2222-7962/2019.2/1.
58. Tigabu, M. Characterization of forest tree seed quality with near infrared spectroscopy and multivariate analysis: PhD Thesis / M. Tigabu. - 2003. - 56 pp. + Papers I-VII p.
59. Tigabu, M. Multivariate discriminant analysis of single seed near infrared spectra for sorting dead-filled and viable seeds of three pine species: does one model fit all species? / M. Tigabu, A. Daneshvar, R. Jingjing et al. // Forests. - 2019. - Vol. 10. - № 6. - P. article id 469. - DOI: https://doi.org/10.3390/f10060469.
60. Vale, A.M.P.G. A new automatic approach to seed image analysis: From acquisition to segmentation / A.M.P.G. Vale, M. Ucchesu, C. Di Ruberto et al. - 2020. - DOI: https://doi.org/10.48550/arXiv.2012.06414.
61. Wang, D. Single Wheat Kernel Color Classification by Using Near-Infrared Reflectance Spectra / D. Wang, F.E. Dowell, R.E. Lacey // Cereal Chemistry. - 1999. - Vol. 76. - № 1. - P. 30-33. - DOI: https://doi.org/10.1094/CCHEM.1999.76.1.30.
62. Wang, D. Single wheat kernel size effects on near-infrared reflectance spectra and color classification / D. Wang, F.E. Dowell, R.E. Lacey // Cereal Chemistry. - 1999. - Vol. 76. - № 1. - P. 34-37. - DOI: https://doi.org/10.1094/CCHEM.1999.76.1.34.
63. Yazici, N. Aspectual Fertility Variation and Its Effect on Gene Diversity of Seeds in Natural Stands of Taurus Cedar (Cedrus libani A. Rich.) / N. Yazici, N. Bilir // International Journal of Genomics. - 2017. - Vol. 2017. - P. 1-5. - DOI: https://doi.org/10.1155/2017/2960624.
64. Zhao, F. Relationships between understory vegetation coverage and environmental factors in Pinus massoniana plantations from aerial seeding / F. Zhao, X.Z. Ouyang // Chinese Journal of Applied Ecology. - 2015. - Vol. 26. - № 4. - P. 1071-1076.