Hydrophobization of Betula pendula Roth wood and Pinus sylvestris L. wood with waste vegetable oil and the possibility of its utilization in a biochar sorbent for copper ions
Abstract and keywords
Abstract (English):
The development of methods and technologies for the protective treatment of wood in order to improve its properties is an urgent task. Existing methods of protective wood treatment (the use of compounds, coatings and paints) have certain disadvantages, such as high cost, the possibility of changing the texture and color of wood, as well as the toxicity of some substances. In this regard, the purpose of this work was to establish the effectiveness of hydrophobization of birch (Betula pendula Roth) and pine (Pinus sylvestris) wood with waste vegetable oil and test biochar from such wood as a carbon sorbent of copper ions. Modification of Betula pendula Roth and Pinus sylvestris wood with waste sunflower oil leads to a significant increase in the hydrophobicity of biopolymer materials; water and moisture resistance increased by 2 and 1.6 times (p<0.05). A high degree of interfacial interaction between wood of both species and waste vegetable oil, characterized by contact angle values of 24±3.1 and 30±3.9 (p<0.05), respectively. The possibility of obtaining biochar sorbents from modified wood for use in wastewater treatment processes from heavy metal ions (using the example of copper ions). The degree of purification of samples containing copper ions reaches 35% for modified birch wood and 18% for an oil-treated sample of biochar from pine wood: These indicators are comparable with the data on purification of a solution from Cu2+ with biochar sorbents from natural birch and pine wood. The study proposes approaches to the utilization of modified wood with the production of functional materials (bi-carbon sorbents), which makes it possible to create conditions for waste-free production, while reducing the anthropogenic load on the environment.

Keywords:
wood, Betula pendula Roth, Pinus sylvestris L., hydrophobization, biochar, sorption, water resistance, contact angle
Text
Text (PDF): Read Download
References

1. Varganici C. D., Rosu L., Rosu D. et al. Sustainable wood coatings made of epoxidized vegetable oils for ultraviolet protection // Environ Chem Lett. 2021. Vol. 19. pp. 307-328. https://doi.org/10.1007/s10311-020-01067-w.

2. Loskutov S. R. i dr. Gigroskopicheskie svoystva drevesiny listvennyh porod // Lesnoy vestnik [Forestry bulletin]. – 2022. – T. 26. – №. 2. – S. 92-102.

3. Ning L. et al. How does surfactant affect the hydrophobicity of wax-coated wood? //Colloids and Surfaces A: Physicochemical and Engineering Aspects. – 2022. – T. 650. – S. 129606. https://doi.org/10.1016/j.colsurfa.2022.129606/

4. Wang Z. et al. Characterization of wood cell walls treated by high-intensity microwaves: Effects on physicochemical structures and micromechanical properties //Industrial Crops and Products. – 2022. – T. 187. – S. 115341. https://doi.org/10.1016/j.indcrop.2022.115341.

5. Issledovanie mezhfaznogo vzaimodeystviya drevesiny berezy s propitochnym sostavom / K. V. Zhuzhukin, L. I. Bel'chinskaya, E. V. Tomina, A. N. Zyablov, V. H. Yen, A. S. Chuykov // Lesotehnicheskiy zhurnal. – 2023. – T. 13. – № 1 (49). – S. 209–221. - Bibliogr.: s. 218-220 (21 nazv.). – DOI: https://doi.Org/10.34220/issn.2222-7962/2023.1/14.

6. Li Z. et al. Curing characteristics of low molecular weight melamine-urea–formaldehyde (MUF) resin-impregnated poplar wood //Construction and Building Materials. – 2022. – T. 325. – S. 126814. https://doi.org/10.1016/j.conbuildmat.2022.126814.

7. Altgen M. et al. Chemical imaging to reveal the resin distribution in impregnation-treated wood at different spatial scales //Materials & Design. – 2023. – T. 225. – S. 111481. https://doi.org/10.1016/j.matdes.2022.111481

8. Dorieh A. et al. Recent developments in the performance of micro/nanoparticle-modified urea-formaldehyde resins used as wood-based composite binders: A review //International Journal of Adhesion and Adhesives. – 2022. – T. 114. – S. 103106. https://doi.org/10.1016/j.ijadhadh.2022.103106.

9. Boneka A. S. et al. Sorption isotherm and physico-mechanical properties of kedondong (Canarium spp.) wood treated with phenolic resin //Construction and Building Materials. – 2021. – T. 288. – S. 123060. https://doi.org/10.1016/j.conbuildmat.2021.123060.

10. Wang W., Ran Y., Wang J. Improved performance of thermally modified wood via impregnation with carnauba wax/organoclay emulsion //Construction and Building Materials. – 2020. – T. 247. – S. 118586. https://doi.org/10.1016/j.conbuildmat.2020.118586.

11. Bao M. et al. Changes in Chemical Composition, Crystallizability, and Microstructure of Decayed Wood-Fiber-Mat-Reinforced Composite Treated with Copper Triazole Preservative //Forests. – 2022. – T. 13. – №. 9. – S. 1387. https://doi.org/10.3390/f13091387.

12. Rabajczyk A., Zielecka M., Małozięć D. Hazards resulting from the burning wood impregnated with selected chemical compounds //Applied Sciences. – 2020. – T. 10. – №. 17. – S. 6093. https://doi.org/10.3390/app10176093.

13. Shen X. et al. Water vapor sorption mechanism of furfurylated wood //Journal of Materials Science. – 2021. – T. 56. – S. 11324-11334. https://doi.org/10.1007/s10853-021-06041-7.

14. Tan X., Liu Y., Zeng G., Wang X., Hu X., Gu Y., Yang Z. Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere. 2015; 125: 70-85. DOI:https://doi.org/10.1016/j.chemo-sphere.2014.12.058.

15. Bashir A. et al. Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods //Environmental Chemistry Letters. – 2019. – T. 17. – S. 729-754. https://doi.org/10.1007/s10311-018-00828-y.

16. Zheng H. et al. Biochar for water and soil remediation: Production, characterization, and application // A New Paradigm for Environmental Chemistry and Toxicology: From Concepts to Insights. – 2020. – S. 153-196. https://doi.org/10.1007/978-981-13-9447-8_11.

17. Sergeeva A. S., Vostrikova N. L., Medvedevskih M. Yu. Razrabotka kompleksa metrologicheskogo obespecheniya pischevoy promyshlennosti // Etalony. Standartnye obrazcy. – 2021. – № 1. – S. 21-33.

18. Dmitrenkov A. I., Nikulin S. S., Nikulina N. S., Borovskaya A. M., Nedzelsky E. A. (2020) Study ofthe process of impregnating wood birches spent vegetable oil. Forest Journal 10(2) 161 doi: 10.34220 / issn .2222-7962/2020.2/16.

19. Serba E. M. i dr. Usovershenstvovanie metodiki opredeleniya lipazy, osnovannoy na metode polucheniya zhirnyh kislot, v fermentnyh preparatah dlya pischevoy promyshlennosti // Izvestiya vuzov. Prikladnaya himiya i biotehnologiya. – 2023. – T. 13. – № 1 (44). – S. 57-66.

20. Zhernosek A. V., Strukova M. N. Vliyanie predpriyatiy myasnoy promyshlennosti na okruzhayuschuyu sredu // Sistema upravleniya ekologicheskoy bezopasnost'yu. – Ekaterinburg, 2021. – S. 105-112.

21. Skurydin Yu. G., Skurydina E. M. Sravnitel'naya ocenka vliyaniya faktorov fizicheskogo vozdeystviya na molekulyarnuyu podvizhnost' i stepen' kristallichnosti drevesiny berezy // Sistemy. Metody. Tehnologii. – 2020. – №. 4. – S. 119-126.

22. Vedenyapina M. D., Kurmysheva A. Yu., Kulaishin S. A., Kryazhev Yu. G. Adsorption of some heavy metals on activated carbons (review). Chemistry of solid fuel. 2021; 2: 18-41. DOI:https://doi.org/10.31857/S0023117721020092. EDN: UOOLVP.

23. Tomina, E. V. Sorbcionno-poverhnostnye harakteristiki modificirovannogo biouglya, poluchennogo pri karbonizacii opilok sosny / E. V. Tomina, N. A. Hodosova, A. N. Lukin // Sorbcionnye i hromatograficheskie processy. – 2022. – T. 22, № 4. – S. 442-452. – DOIhttps://doi.org/10.17308/sorpchrom.2022.22/10600. – EDN HGRUCJ.


Login or Create
* Forgot password?