Voronezh, Russian Federation
Minsk, Belarus
Voronezh, Russian Federation
Voronezh State University of Forestry and Technologies named after G.F. Morozov (aspirapnt)
Voronezh, Russian Federation
UDK 630 Лесное хозяйство. Лесоводство
Hydraulic manipulators can be used to solve technical tasks on flatlands that have a slope or are arranged on structurally unstable soils. In these conditions, reliable and safe operation of hydraulic manipulators can be ensured by the use of outriggers. The implementation of the alignment process of the pivot platform relative to the horizon can be carried out with different positions of other elements of the manipulator - boom, handle and telescopic extension. At the same time, the loads on the hydraulic cylinders of the mobile system change over time. The intensity of dynamic loading depends on a set of design and operating parameters. A mathematical model is proposed to study the characteristics of dynamic loading of the hydraulic cylinder system of a mobile transport and technological bus. The mathematical model is constructed by a universal method based on Lagrange equations of the 2nd kind for a mechanical system with four degrees of freedom. The model was studied for the case when all the elements of the hydraulic manipulator are loaded, but over time only the angle between the horizontal plane and the plane of the surface of the pivot plate changes. The other elements do not shift relative to the platform. The extension of the outrigger is provided by the operation of a gear pump, therefore, the supply of working fluid is cyclic. The model takes into account pressure pulsations, which cause high-frequency oscillations of the elements of hydraulic units with a significant amplitude. It is shown that an increase in the rotation frequency of the gear pump shaft leads to a decrease in the pressure in the outrigger hydraulic cylinder from the values obtained under equilibrium conditions with the corresponding position of the manipulator elements, as well as to an increase in the amplitude of pressure pulsations as the platform is leveled.
hydraulic manipulator, mathematical model, dynamics, timber transport machine, hydraulic cylinder, pressure, outrigger, gear pump
1. Gidromanipulyatory i lesnoe tehnologicheskoe oborudovanie: monografiya / Z. K. Emtyl', I. M. Bartenev, M. V. Drapalyuk, P. I. Popikov, A. P. Tatarenko, L. D. Buhtoyarov; pod red. d-ra tehn. nauk, prof. I. M. Barteneva. – M. : FLINTA : Nauka, 2011.- 408 s. URL: https://elibrary.ru/item.asp?id=20403683.
2. Jeng S., Yang C., Chieng W. Outrigger force measure for mobile crane safety based on linear programming optimization // Mechanics Based Design of Structures and Machines. 2010. V. 38. P. 145–170. DOI:https://doi.org/10.1080/15397730903482702.
3. Popikov, P. I. Eksperimental'nye issledovaniya dinamiki gidroprivoda mehanizma pod'ema lesnogo manipulyatora // Politematicheskiy setevoy elektronnyy nauchnyy zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta. – 2012. – № 75. – S. 407-418. URL: https://elibrary.ru/item.asp?id=17305469
4. Matematicheskoe modelirovanie processov v sisteme gidroprivoda lesnyh manipulyatorov / P. I. Popikov, P. I. Titov, A. A. Sidorov [i dr.] // Politematicheskiy setevoy elektronnyy nauchnyy zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta. – 2011. – № 69. – S. 96-106. URL: https://elibrary.ru/item.asp?id=16391482
5. Lagerev, I. A. Modelirovanie rabochih processov manipulyacionnyh sistem mobil'nyh mnogocelevyh transportno-tehnologicheskih mashin i kompleksov: monografiya / I. A. Lagerev. – Bryansk : RIO BGU, 2016. – 371 s. URL: https://elibrary.ru/item.asp?id=29647139.
6. Urbaś A. Computational implementation of the rigid finite element method in the statics and dynamics analysis of forest cranes // Applied Mathematical Modelling. 2017. V. 46. P. 750–762. DOI:https://doi.org/10.1016/j.apm.2016.08.006.
7. Feau C., Politopoulos I., Kamaris G. S., Mathey C., Chaudat T., Nahas G. Experimental and numerical investigation of the earthquake response of crane bridges. Engineering Structures 2015. V. 84. P. 89–101. DOI:https://doi.org/10.1016/j.engstruct.2014.
8. Alhaddad W., Halabi Y., Xu H., Lei H. Outrigger and Belt-Truss System Design for High-Rise Buildings: A Comprehensive Review Part II – Guideline for Optimum Topology and Size Design. Advances in Civil Engineering, 2020, 1–30. DOI:https://doi.org/10.1155/2020/2589735.
9. Kolesnikov P. G., Moiseev G. D. Modelirovanie rezhimov raboty teleskopicheskogo gidromanipulyatora // Aktual'nye problemy lesnogo kompleksa. – 2017. – № 50. – S. 14-17. URL: https://elibrary.ru/item.asp?id=30763326.
10. Poletaykin V. F., Gus'kov S. Yu. Lesopogruzchiki perekidnogo tipa s izmenyayuschimsya centrom vrascheniya tehnologicheskogo oborudovaniya. Dinamika elementov konstrukcii: monografiya. – Krasnoyarsk: SibGTU, 2013. – 156 s.
11. Avdeeva E. V., Poletaykin V. F. Issledovanie nagruzok na gidrocilindry manipulyatora // Hvoynye boreal'noy zony. 2020. T. 38. № 5-6. S. 305-309. URL: https://elibrary.ru/item.asp?id=44597525.
12. Kolesnikov P. G., Moiseev G. D. Raschet ustoychivosti lesnoy mashiny // Aktual'nye problemy lesnogo kompleksa. 2017. № 50. S. 11-13. URL: https://elibrary.ru/item.asp?id=30763325.
13. Kolesnikov P. G., Moiseev G. D. Obosnovanie parametrov ustoychivosti forvarderov-sortimentovozov // Novye materialy i tehnologii v mashinostroenii. – 2016. – № 24. – S. 83-86. URL: https://elibrary.ru/item.asp?id=27320575.
14. Lagerev A. V., Lagerev I. A. Modelirovanie rabochih processov v drossel'no-reguliruemom gidroprivode manipulyacionnyh sistem mobil'nyh mashin pri razdel'nom dvizhenii zven'ev // Nauchno-tehnicheskiy vestnik Bryanskogo gosudarstvennogo universiteta. – 2018. - № 4. – S. 355-379. DOI:https://doi.org/10.22281/2413-9920-2018-04-04-355-379.
15. Lagerev A. V., Lagerev I. A. Modelirovanie rabochih processov v chastotno-reguliruemom gidroprivode manipulyacionnyh sistem mobil'nyh mashin pri razdel'nom dvizhenii zven'ev // Nauchno-tehnicheskiy vestnik Bryanskogo gosudarstvennogo universiteta. – 2019. - № 2. – S. 187-209. DOI:https://doi.org/10.22281/2413-9920-2019-05-02-187-209.
16. Bychkov, I. S. Ocenka ustoychivosti gruzopod'emnogo krana, oborudovannogo gruntovymi yakoryami // Nauchnyy recenziruemyy zhurnal "Vestnik SibADI". 2017. T. 3(55). S. 7-11. DOI: https://doi.org/10.26518/2071-7296-2017-3(55)-7-11.
17. Lagerev I. A., Lagerev A. V. Povyshenie bezopasnosti ekspluatacii mobil'nyh transportno-tehnologicheskih mashin s manipulyacionnymi sistemami pri rabote s autrigerami // Nauchno-tehnicheskiy vestnik Bryanskogo gosudarstvennogo universiteta. 2017; 3: 296-302. – DOIhttps://doi.org/10.22281/2413-9920-2017-03-03-296-302.
18. Qian J., Bao L., Yuan R., Yang X. Modeling and Analysis of Outrigger Reaction Forces of Hydraulic Mobile Crane // International Journal of Engineering Transactions. B: Applications. 2017. V. 30, № 8. R. 1246-1252. DOI:https://doi.org/10.5829/ije.2017.30.08b.18.
19. Dahiev F. F., Raevskaya L. T. Raschet obobschennyh sil lesnogo manipulyatora s chetyr'mya stepenyami svobody. Sovremennye problemy nauki i obrazovaniya. 2015; 1-1: 75. URL: https://elibrary.ru/item.asp?id=25323100.
20. Dobrachev A. A., Raevskaya L. T., Shvec A. V. Kinematicheskie shemy, struktury i raschet parametrov lesopromyshlennyh manipulyatornyh mashin: monografiya. – Ekaterinburg, 2014. – 128 s. – ISBN 978-5-94984-450-2. URL: https://elibrary.ru/item.asp?id=22460987.
21. Popikov P. I., Tanchuk P. V. Povyshenie effektivnosti pogruzochno-razgruzochnyh rabot gidromanipulyatorov lesotransportnyh mashin s vyravnivatelyami opornyh platform // Voronezhskiy nauchno-tehnicheskiy vestnik. 2019. T. 30. № 4. S. 95-100. URL: https://elibrary.ru/item.asp?id=41586856.
22. Patent № 2762905 C1 Rossiyskaya Federaciya, MPK B66C 23/80, B66C 13/18, A01G 23/00. Gidrosistema mehanizma vyravnivaniya oporno-povorotnogo ustroystva gidromanipulyatora lesotransportnoy mashiny : № 2021116628 : zayavl. 07.06.2021 : opubl. 23.12.2021 / P. I. Popikov, P. V. Tanchuk, V. P. Popikov, R. V. Yudin ; zayavitel' Federal'noe gosudarstvennoe byudzhetnoe obrazovatel'noe uchrezhdenie vysshego obrazovaniya "Voronezhskiy gosudarstvennyy lesotehnicheskiy universitet imeni G.F. Morozova". URL: https://yandex.ru/patents/doc/RU2762905C1_20211223.
23. Staticheskoe nagruzhenie silovogo gidroprivoda zven'ev manipulyatora lesotransportnoy mashiny v kriticheskom rezhime / O. R. Dornyak, L. V. Markova, S. K. Popikov, P. V. Tanchuk // Lesotehnicheskiy zhurnal. – 2023. – T. 13. – № 2 (50). – S. 87–104. – Bibliogr.: s. 100–104 (29 nazv.). – DOI: https://doi.org/10.34220/issn.2222-7962/2023.2/5.
24. Yablonskiy A. A., Nikiforova V. M. Kurs teoreticheskoy mehaniki: statika, kinematika, dinamika: ucheb. - 16-e izd., ster. - M.: KnoRus, 2011. - 603 s.
25. Bashta, T. M. Gidravlika, gidromashiny i gidroprivody. – M.: Mashinostroenie, 1982. – 423 s.
26. Havronin V. P., Nesmiyanov I. A. Issledovanie neravnomernosti podachi rabochey zhidkosti shesterennymi nasosami // Sovremennaya tehnika i tehnologii. 2012. № 3. URL: https://technology.snauka.ru/2012/03/415 (data obrascheniya: 12.07.2023).
27. Zharov V. P., Rybak A. T., Fridrih R. A. Modelirovanie i eksperimental'nye issledovaniya gidromehanicheskoy sistemy so znakoperemennoy nagruzkoy // Vestnik DGTU, 2006. T.6. №1(28). S. 17-24. URL: https://elibrary.ru/item.asp?id=23074487.
28. Shesterennyy nasos – vysokoproizvoditel'nyy. URL: https://ah-rf.ru/images/companies/5/blog/argo-hytos%20russian/nasosu/%D0%9D%D0%B0%D1%81%D0%BE%D1%81%D1%8B%20GP1_RU.pdf?1500562700958.