"Seed – culture" technological passport: RGB-brightness and RGB-saturation identification of Pinus sylvestris L. var. Negorelskaya individual seeds based on the author's technique
Abstract and keywords
Abstract (English):
The use of optometric parameters of the outer shell of seeds in RGB space as a non-destructive marker for identifying subgroups of seeds with different germination quality can lead to a better understanding of the physiological basis of seed germination and the use of deep neural network learning techniques to intensify the reforestation process. There are still quite few studies on the germination of seeds with known optometric parameters of RGB brightness and chromaticity of the outer shell of individual seeds. De-winged individual seeds of Pinus sylvestris L. var Negorelskaya were selected (N = 1200), representing valuable genetic material based on a variety of climatypes. Based on the author's method of forming a technological passport, the RGB brightness and RGB chromaticity parameters of the outer shell of these seeds were determined based on segmented scans obtained on a Brother DCP-1510 charge-coupled device. The seeds were sown manually in rectangular containers with a cell volume of 120 cubic centimeters with a dimension of 5 × 8 cells and a dichotomous germination index (0 – did not germinate, 1 – ripened) was fixed for 30 and 50 days for each seed. The H0 hypothesis was tested on the absence of differences in RGB brightness and RGB chromaticity of the outer shell of the seed in groups with zero and non-zero germination at a fixed level of significance α = 0.05 using the ANOVA F-criterion or the ANOVA Welch-criterion, depending on the statistics of uniformity of the Levene's dispersions. The interquartile range of IQR of individual optometric indicators of sown seeds is 27 units (m ; SD; | 82 ; 21) for the quantitative RGB brightness variant and 0.174 relative units (m ; SD; | 0.189; 0.107) for the RGB chromaticity variant, respectively. The observed differences between the average statistics of RGB brightness (m | 78; SD | 18) and RGB chromaticity (m | 0.177; SD | 0.104) of the outer shell of the seeds of P. sylvestris L. var. Negorelskaya in the group of non-zero (N = 942) germination and average statistical indicators (m | 96; SD | 25; M | 0.235; SD | 0.103) in the group of zero (N = 258) germination are not accidental (p = 1.5986e-23; p = 4.6857e-15). The implementation of the results will make it possible to implement the technology of growing the containerized planting material of Scots pine (P. sylvestris L. var. Negorelskaya) to investigate the juvenile period and development of forest crops in natural production conditions and place the results in an individual technological passport for each plant "seed – culture".

Keywords:
forest landscape restoration, Pinus sylvestris L. var. Negorelskaya, individual seeds; image processing, optometric parameters, RGB space, «seed – culture» technological passport, FLR-Library
Text
Text (PDF): Read Download
References

1. Al'bekov, A.U. Ekspress-analizator kachestva semyan: pat. 2675056 Rossiyskaya Federaciya, MPK7 V 07 S 5/00 / A.U. Al'bekov, M.V. Drapalyuk, S.S. Morkovina i dr. – zayavitel' i patentoobladatel' Voronezh. gos. lesotehn. un-t. – № 2018104941 ; zayavl. 08.02.2018 ; opubl. 14.12.2018, Byul. № 35., .

2. Arhipov, M.V. Razrabotka kompleksnogo parametricheskogo pasporta zernovki dlya vyyavleniya partiy hozyaystvenno cennyh semyan i zerna s minimal'nym urovnem skrytoy povrezhdennosti dlya otbora v industrial'nom zernoproizvodstve / M.V. Arhipov, Yu.A. Tyukalov, T.A. Danilova i dr. // Sovremennoe sostoyanie, problemy i perspektivy razvitiya agrarnoy nauki : Materialy VIII mezhdunarodnoy nauchno-prakticheskoy konferencii. – Simferopol', 2023. – S. 36-37. – Rezhim dostupa: https://elibrary.ru/jwtrky.

3. Drapalyuk, M.V. Ekspress-analizator kachestva semyan: pat. 040058 EAPO, MPK B 07 C 5/34 / M.V. Drapalyuk, S.S. Morkovina, A.I. Novikov i dr. – 2022. – Rezhim dostupa: https://www.eapo.org/ru/patents/reestr/patent.php?id=40058.

4. Drapalyuk, M.V. Analiz operacionnyh mehanizirovannyh tehnologiy separacii semyan pri iskusstvennom lesovosstanovlenii / M.V. Drapalyuk, A.I. Novikov // Lesotehnicheskiy zhurnal. – 2018. – T. 8. – № 4. – S. 207-220. – DOI: https://doi.org/10.12737/article_5c1a3237290288.22345283. – Rezhim dostupa: https://elibrary.ru/akvbnm.

5. Mamaev, S.A. Formy vnutrividovoy izmenchivosti drevesnyh rasteniy (na primere semeystva Pinaceae na Urale) / S.A. Mamaev 1. – M. : Nauka, 1973. – 284 s. – Rezhim dostupa: https://www.elibrary.ru/vwvadh.

6. Novikov, A.I. Nekotorye rezul'taty aprobacii tehnologii separacii po kolichestvennomu priznaku semyan sosny obyknovennoy / A.I. Novikov // Izvestiya Sankt-Peterburgskoy lesotehnicheskoy akademii. – 2019. – T. 227. – S. 68-87. – DOI: https://doi.org/10.21266/2079-4304.2019.227.68-87. – Rezhim dostupa: http://spbftu.ru/wp-content/uploads/2019/09/227-06.pdf.

7. Novikov, A.I. Sovershenstvovanie tehnologii polucheniya vysokokachestvennogo lesosemennogo materiala : special'nost' 05.21.01 «Tehnologiya i mashiny lesozagotovok i lesnogo hozyaystva» : avtoref. dis. ... d-ra tehn. nauk / A.I. Novikov. – Voronezh, 2021. – 32 s. – Rezhim dostupa: https://elibrary.ru/qgemiu.

8. Novikov, A.I. Ekspress-analiz lesnyh semyan biofizicheskimi metodami / A.I. Novikov 1. – Voronezh : Voronezhskiy gosudarstvennyy lesotehnicheskiy universitet im. G.F. Morozova, 2018. – 128 s. – Rezhim dostupa: https://elibrary.ru/yzuzgx.

9. Novikov, A.I. Ekspress-analiz semyan v lesohozyaystvennom proizvodstve: teoreticheskie i tehnologicheskie aspekty / A.I. Novikov, M.V. Drapalyuk, S.V. Sokolov, T.P. Novikova 1. – Voronezh : Voronezhskiy gosudarstvennyy lesotehnicheskiy universitet im. G.F. Morozova, 2022. – 176 s. – Rezhim dostupa: https://elibrary.ru/hmrfvd.

10. Novikov, A.I. Vliyanie individual'noy massy semyan sosny obyknovennoy (Pinus sylvestris L.) sorta «Negorel'skaya » na 30-dnevnoe prorastanie v 40-yacheistyh SideSlit-konteynerah / A.I. Novikov, S.V. Rebko, T.P. Novikova, E.P. Petrischev // Lesotehnicheskiy zhurnal. – 2023. – T. 13. – № 2 (50). – S. 59-86. – DOI: https://doi.org/10.34220/issn.2222-7962/2023.2/4. – Rezhim dostupa: https://elibrary.ru/cewtjt.

11. Novikov, A.I. Indeks kachestva Diksona: svyaz' s tehnologicheskim vozdeystviem na lesnye semena / A.I. Novikov, S.V. Rebko, T.P. Novikova, E.P. Petrischev // Lesotehnicheskiy zhurnal. – 2023. – T. 13. – № 1. – S. 23-36. – DOI: https://doi.org/10.34220/issn.2222-7962/2023.1/2. – Rezhim dostupa: https://www.elibrary.ru/nsvcyi.

12. Novikov, A.I. Issledovanie spektrometricheskih pokazateley semyan kak osnova intensifikacii processa lesovyraschivaniya kul'tur sosny obyknovennoy sorta «Negorel'skaya» : grant RNF 23-26-00228 / A.I. Novikov, S.V. Rebko, T.P. Novikova, E.P. Petrischev. – M. : Rossiyskiy nauchnyy fond, 2023. – Rezhim dostupa: https://elibrary.ru/jtyxux.

13. Novikov, A.I. Issledovanie spektrometricheskih parametrov semennoy kozhury sosny obyknovennoy v IK-diapazone / A.I. Novikov, V.V. Saushkin // Lesotehnicheskiy zhurnal. – 2018. – T. 8. – № 3. – S. 30-37. – DOI: https://doi.org/10.12737/article_5b97a164e41782.20107217. – Rezhim dostupa: https://elibrary.ru/votakr.

14. Novikova, T.P. Analiz terminologii stran mira, osuschestvlyayuschih aktivnuyu lesohozyaystvennuyu deyatel'nost' v oblasti issledovaniya spektrometricheskih svoystv lesnyh semyan : svidetel'stvo o gosudarstvennoy registracii bazy dannyh № 2023624886 Rossiyskaya Federaciya / T.P. Novikova, A.I. Novikov, E.P. Petrischev. – № 2023624495 ; zayavl. 02.12.2023 ; zareg. 22.12.2023, . – Rezhim dostupa: https://elibrary.ru/lljghq.

15. Novikova, T.P. Vliyanie fiziko-mehanicheskih svoystv pochvy na process adaptivnogo lesovosstanovleniya / T.P. Novikova, E.P. Petrischev, A.I. Novikov // Lesnoe hozyaystvo : Materialy 88-y nauchno-tehnicheskoy konferencii professorsko-prepodavatel'skogo sostava, nauchnyh sotrudnikov i aspirantov (s mezhdunarodnym uchastiem). – Minsk : Belorusskiy gosudarstvennyy tehnologicheskiy universitet, 2024. – S. 291-294. – Rezhim dostupa: https://elibrary.ru/jaikmm.

16. Petrischev, E.P. Rezul'taty issledovaniy posevnyh kachestv semyan sosny obyknovennoy (Pinus sylvestris L., sort Negorel'skaya) i opredeleniya indeksa kachestva Diksona 60-dnevnyh seyancev v konteynernom pitomnike : svidetel'stvo o gosudarstvennoy registracii bazy dannyh № 20236 / E.P. Petrischev, T.P. Novikova, A.I. Novikov. – Rezhim dostupa: https://www.elibrary.ru/gwhapl.

17. Petrischev, E.P. Rezul'taty morfometricheskih issledovaniy semyan sosny obyknovennoy (Pinus sylvestris L., sort Negorel'skaya) : svidetel'stvo o gosudarstvennoy registracii bazy dannyh № 2023624679 Rossiyskaya Federaciya / E.P. Petrischev, T.P. Novikova, S.V. Rebko, A.I. Novikov. – № 2023624380 : zayavl. 01.12.2023 : opubl. 18.12.2023, . – Rezhim dostupa: https://elibrary.ru/dyexbk.

18. Poplavskaya, L.F. Rezul'taty rayonirovaniya sosny obyknovennoy sorta Negorel'skaya v Respublike Belarus' / L.F. Poplavskaya, S.V. Rebko, P.V. Tupik // Trudy BGTU. Seriya 1: Lesnoe hozyaystvo, prirodopol'zovanie i pererabotka vozobnovlyaemyh resursov. – 2021. – T. 1. – № 240. – S. 58-67. – DOI: https://doi.org/10.52065/2519-402x-2021-240-7-58-67. – Rezhim dostupa: https://www.elibrary.ru/sxivbp.

19. Priyatkin, N.S. Neinvazivnaya ekspress-ocenka raznokachestvennosti i hozyaystvennoy prigodnosti semennogo materiala na osnove ispol'zovaniya instrumental'nyh fizicheskih metodov: diss. ... d-ra biol. nauk: 4.1.5 / N.S. Priyatkin. – Sankt-Peterburg : AFI, 2023. – 253 s. – Rezhim dostupa: https://elibrary.ru/aseotz.

20. Rebko, S.V. Vzaimosvyazi mezhdu geometricheskimi i gravimetricheskimi parametrami semyan sosny obyknovennoy / S.V. Rebko, A.I. Novikov, T.P. Novikova, E.P. Petrischev // Trudy BGTU. Seriya 1 - Lesnoe hozyaystvo, prirodopol'zovanie i pererabotka vozobnovlyaemyh resursov. – 2024. – T. 276. – S. 66-76. – DOI: https://doi.org/10.52065/2519-402H-2024-276-8. – Rezhim dostupa: https://elibrary.ru/ltgvsz.

21. Bernardes, R.C. Deep-Learning Approach for Fusarium Head Blight Detection in Wheat Seeds Using Low-Cost Imaging Technology / R.C. Bernardes, A. De Medeiros, L. da Silva et al. // Agriculture. – 2022. – Vol. 12. – № 11. – P. 1801. – DOI: https://doi.org/10.3390/agriculture12111801.

22. Castro, É.B. de L. Classification of Phaseolus lunatus L. using image analysis and machine learning models / É.B. de L. Castro, R. de S. Melo, E.M. da Costa et al. // Revista Caatinga. – 2022. – Vol. 35. – № 4. – P. 772-782. – DOI: https://doi.org/10.1590/1983-21252022v35n404rc.

23. Evdokimova, S.A. Segmentation of store customers to increase sales using ABC-XYZ-analysis and clustering methods / S.A. Evdokimova // Journal of Physics: Conference Series. – 2021. – Vol. 2032. – № 1. – P. 012117. – DOI: https://doi.org/10.1088/1742-6596/2032/1/012117.

24. Heinrichs, S. Landscape-Scale Mixtures of Tree Species are More Effective than Stand-Scale Mixtures for Biodiversity of Vascular Plants, Bryophytes and Lichens / S. Heinrichs, C. Ammer, M. Mund et al. // Forests. – 2019. – Vol. 10. – № 1. – P. 73. – DOI: https://doi.org/10.3390/f10010073.

25. Ivetić, V. The role of forest reproductive material quality in forest restoration / V. Ivetić, A.I. Novikov // Forestry Engineering Journal. – 2019. – Vol. 9. – № 2. – P. 56-65. – DOI: https://doi.org/10.34220/issn.2222-7962/2019.2/7.

26. Jing, Y. Establish seedling quality classification standard for Chrysanthemum efficiently with help of deep clustering algorithm / Y. Jing, H. Zhao, S. Yu // ArXiv. – 2024. – P. 1-12. – DOI: https://doi.org/10.48550/arXiv.2409.08867.

27. Nehoshtan, Y. Robust seed germination prediction using deep learning and RGB image data / Y. Nehoshtan, E. Carmon, O. Yaniv et al. // Scientific Reports. – 2021. – Vol. 11. – № 1. – P. 22030. – DOI: https://doi.org/10.1038/s41598-021-01712-6.

28. Nguyen, Q.T. X-ray analysis of seed quality of Eucommia ulmoides Oliv. of different geographical origin / Q.T. Nguyen, S.G. Sakharova, N.S. Priyatkin, A.V. Zhigunov // Izvestia Sankt-Peterburgskoj lesotehniceskoj akademii. – 2021. – № 234. – P. 134-151. – DOI: https://doi.org/10.21266/2079-4304.2021.234.134-151.

29. Novikov, A.I. Visible wave spectrometric features of Scots pine seeds: the basis for designing a rapid analyzer / A.I. Novikov // IOP Conference Series: Earth and Environmental Science. – 2019. – Vol. 226. – № 1. – P. 012064. – DOI: https://doi.org/10.1088/1755-1315/226/1/012064.

30. Novikov, A.I. Mechanization of coniferous seeds grading in Russia: a selected literature analysis / A.I. Novikov, B.T. Ersson, V.V. Malyshev et al. // IOP Conference Series: Earth and Environmental Science. – 2020. – Vol. 595. – P. 012060. – DOI: https://doi.org/10.1088/1755-1315/595/1/012060.

31. Novikov, A.I. The effect of seed coat color grading on height of one-year-old container-grown Scots pine seedlings planted on post-fire site / A.I. Novikov, V. Ivetić // IOP Conference Series: Earth and Environmental Science. – 2019. – Vol. 226. – P. 012043. – DOI: https://doi.org/10.1088/1755-1315/226/1/012043.

32. Novikov, A.I. The effect of seed size grading on seed use efficiency and height of one-year-old container-grown Scots pine (Pinus sylvestris L.) seedlings / A.I. Novikov, V. Ivetić // Reforesta. – 2018. – Vol. 6. – P. 100-109. – DOI: https://doi.org/10.21750/REFOR.6.08.61.

33. Novikov, A.I. Scots pine seedlings growth dynamics data reveals properties for the future proof of seed coat color grading conjecture / A.I. Novikov, V. Ivetić, T.P. Novikova, E.P. Petrishchev // Data. – 2019. – Vol. 4. – № 3. – P. 106. – DOI: https://doi.org/10.3390/data4030106.

34. Novikov, A.I. Non-destructive quality control of forest seeds in globalization: problems and prospects of output innovative products / A.I. Novikov, T.P. Novikova // Globalization and Its Socio-Economic Consequences / T. Kliestik ed. . – Rajecke Teplice, Slovakia : Univ Zilina, 2018. – P. 1260-1267.

35. Novikov, A.I. Dickson Quality Index: relation to technological impact on forest seeds / A.I. Novikov, S. Rabko, T.P. Novikova, E.P. Petrishchev // Forestry Engineering Journal. – 2023. – Vol. 13. – № 1. – P. 23-36. – DOI: https://doi.org/10.34220/issn.2222-7962/2023.1/2.

36. Novikov, A.I. Performance of Scots pine seedlings from seeds graded by colour / A.I. Novikov, S.V. Sokolov, M.V. Drapalyuk et al. // Forests. – 2019. – Vol. 10. – № 12. – P. 1064. – DOI: https://doi.org/10.3390/f10121064.

37. Novikova, T. FLR-Library reference information system for adaptive forest restoration: the information model / T. Novikova, A. Novikov, V. Lisitsyn, E. Petrishchev // Forestry Engineering Journal. – 2023. – Vol. 13. – № 4. – P. 114-124. – DOI: https://doi.org/10.34220/issn.2222-7962/2023.4/7.

38. Novikova, T. Studying the spectrometric features of forest seeds to improve sowing qualities: a retrospective cluster analysis of the scientific landscape trends / T. Novikova, A. Novikov, E. Petrishchev // Forestry Engineering Journal. – 2023. – Vol. 13. – № 4. – P. 23-39. – DOI: https://doi.org/10.34220/issn.2222-7962/2023.4/1.

39. Novikova, T.P. The choice of a set of operations for forest landscape restoration technology / T.P. Novikova // Inventions. – 2022. – Vol. 7. – № 1. – P. 1. – DOI: https://doi.org/10.3390/inventions7010001.

40. Novikova, T.P. FLR-Library reference information system for adaptive forest restoration: cluster analysis of descriptors / T.P. Novikova, A.I. Novikov, E.P. Petrishchev // Forestry Engineering Journal. – 2023. – Vol. 13. – № 3. – P. 164-179. – DOI: https://doi.org/10.34220/issn.2222-7962/2023.3/12.

41. Novikova, T.P. Reforestation pipeline: case for quality management of NIR-region grading of Scots pine seeds and FLR-algorithm for information processing / T.P. Novikova, E.P. Petrishchev, A.I. Novikov // Silva Balcanica. – 2023. – Vol. 24. – № 3. – P. 5-16. – DOI: https://doi.org/10.3897/silvabalcanica.24.e114699.

42. Novikova, T.P. The VIS-spectrometric data of Scots pine individual seed reveal forecasting potential for container-grown germination and seedling’s Dickson quality index / T.P. Novikova, E.P. Petrishchev, A.I. Novikov // Preprints. – 2023. – № 1. – DOI: https://doi.org/10.20944/preprints202312.0561.v1.

43. Novikova, T.P. The Root Collar Diameter Growth Reveals a Strong Relationship with the Height Growth of Juvenile Scots Pine Trees from Seeds Differentiated by Spectrometric Feature / T.P. Novikova, P. Tylek, C.B. Mastrangelo et al. // Forests. – 2023. – Vol. 14. – № 6. – P. 1164. – DOI: https://doi.org/10.3390/f14061164.

44. Royo, A.A. Desired REgeneration through Assisted Migration (DREAM): Implementing a research framework for climate-adaptive silviculture / A.A. Royo, P. Raymond, C.C. Kern et al. // Forest Ecology and Management. – 2023. – Vol. 546. – № October. – P. 121298. – DOI: https://doi.org/10.1016/j.foreco.2023.121298.

45. Samsonova, I. Dynamics of biodiversity of nectar-bearing resources in the structure of birch forests / I. Samsonova, V. Do, T. Nguen, P. Sidarenko Petr // Forestry Engineering Journal. – 2020. – Vol. 9. – № 4. – P. 73-81. – DOI: https://doi.org/10.34220/issn.2222-7962/2019.4/8.

46. Slavskiy, V. Study of biodiversity and assessment of the state of common hazel (Corylus avellana L.) in the Voronezh region / V. Slavskiy, T. Nakonechnaya, E. Titov, Z. Govedar // Forestry Engineering Journal. – 2022. – Vol. 12. – № 3. – P. 51-61. – DOI: https://doi.org/10.34220/issn.2222-7962/2022.3/5.

47. Sokolov, S. V. How to increase the analog-to-digital converter speed in optoelectronic systems of the seed quality rapid analyzer / S. V. Sokolov, V. V. Kamenskij, A.I. Novikov, V. Ivetić // Inventions. – 2019. – Vol. 4. – № 4. – P. 61. – DOI: https://doi.org/10.3390/inventions4040061.

48. Sokolov, S.V. New optoelectronic systems for express analysis of seeds in forestry production / S.V. Sokolov, A.I. Novikov // Forestry Engineering Journal. – 2019. – Vol. 9. – № 2. – P. 5-13. – DOI: https://doi.org/10.34220/issn.2222-7962/2019.2/1.

49. Stanturf, J.A. Advances in forest restoration management and technology / J.A. Stanturf, R.K. Dumroese, S. Elliott et al. – New York, NY : Oxford University Press, 2024. – 297-334 p.

50. Thiffault, N. Adaptive silviculture for climate change in the Great Lakes- St. Lawrence Forest Region of Canada: Background and design of a long-term experiment / N. Thiffault, J. Fera, M.K. Hoepting et al. // The Forestry Chronicle. – 2024. – Vol. 100. – № 2. – P. 155-164. – DOI: https://doi.org/10.5558/tfc2024-016.

51. Verheyen, K. Soil physical characteristics predict sapling performance in recent afforestation projects in Flanders (northern Belgium) subjected to drought / K. Verheyen, K. Haegeman, W. Cornelis // Forest Ecology and Management. – 2024. – Vol. 572. – P. 122304. – DOI: https://doi.org/10.1016/j.foreco.2024.122304.


Login or Create
* Forgot password?