В работе рассмотрена регуляризация задача Коши для систем уравнений эллиптического типа первого порядка с постоянными коэффициентами факторизуемым оператором Гельмгольца в неограниченной области.
регуляризация, фундаментальное решение, регулярное решение
Рассматриваемая задача относится к некорректным задачам, т.е. она неустойчива. Условная устойчивость задачи следует из работы А.Н. Тихонова [2], если сузить класс возможных решений до компакта. Система, рассматриваемая в данной работе, была введена Н.Н. Тархановым.[1] Во многих корректных задачах для систем уравнений эллиптического типа первого порядка с постоянными коэффициентами факторизуемым оператором Гельмгольца, недоступно вычисление значение вектор-функции на всей границе. Поэтому, задача восстановления, решения систем уравнений эллиптического типа первого порядка с постоянными коэффициентами факторизуемым оператором Гельмгольца, является одной из актуальных задач теории дифференциальных уравнений.
1. Тарханов Н.Н. Об интегральном представлении решений систем линейных дифференциальных уравнений 1-го порядка в частных производных и некоторых его приложениях // Некоторые вопросы многомерного комплексного анализа. Институт физики АН СССР, Красноярск, 1980 г. - С. 147-160.
2. Тихонов А.Н. О решении некорректно поставленных задач и методе регуляризации // Докл. АН СССР. 1963. - Т. 151. -№ 3. - С. 501-504.
3. Жураев Д.А. Интегральная формула для систем уравнений эллиптического типа в неограниченной области // VI международная научная конференция. Инновации в технологиях и образовании. Белово, 17-18 мая 2013 г. С. 196-200.