Для полностью наблюдаемой дифференциально–алгебраической системы решается задача построения управления, обеспечивающего получение на выходе априори заданного выхода. Исследование ведется методом каскадного расщепления. Приводятся формулы для функций управления и состояния.
the state function, the control, differential-algebraic system, complete obsrevability
The differential-algebraic system.
1. Afanasyev, V.N. The mathematical theory of constructing of control systems / V.N. Afanasyev, V.B. Kolmanovsky, V.R. Nosov // Moscow. "High School". 1998. 574 p.
2. Zubova, S.P. On polinomial solutions of thelinear stationary control system / S.P. Zubova, E.V. Raetskaya, L.H. Thung // "Automation and Remote Control". 2008. T. 69, № 11. P. 1852-1858.
3. Zubova, S.P. On the invariance of time-variable nonlinear system of observation with respect to special perturbation / S.P. Zubova, E.V. Raetskaya, Tuan Cuong Pham // The 8-th Congress of the International Society for Analysis, its Applications, and Computation: Abstracts. Moscow. - M. : PFUR, 2011. P. 397.
4. Zubova S.P. Invariance of a nonstationary observability system under certain perturbations/ S.P. Zubova, E.V. Raetskaya // Journal of Mathematical Sciences. New york. - 2013. Vol. 188, № 3. - P. 218-226.
5. Cuong, Pham Tuan. The study of completely observability of the nonlinear system / Pham Tuan Cuong / / Bulletin of the Izhevsk State Technical University. ISSN 1813 - 7903. Izhevsk. - 2011. № 3. - P.152 - 154.
6. Cuong Pham Tuan. The study of completely observability nonstationary perturbed dynamical system / Pham Tuan Cuong // Polythematic network electronic scientific journal of the Kuban State Agrarian University (The Journal KubGAU) [electronic resource]. - Krasnodar KubGAU 2012. - № 06 (80). - Mode of access: http://ej.kubagro.ru/2012/06/pdf/03/pdf, 0,625 u.p.l.