ДИНАМИКА ИЗМЕНЕНИЯ ТЕПЛОФИЗИЧЕСКИХ ХАРАКТЕРИСТИК ИЗМЕЛЬЧЕННЫХ ДРЕВЕСНЫХ МАТЕРИАЛОВ В ДИСПЕРСНОЙ СИСТЕМЕ МАССИВА ПРИ КУЧЕВОМ ХРАНЕНИИ
Аннотация и ключевые слова
Аннотация (русский):
Хранение измельченных древесных материалов на лесоперерабатывающие предприятия осуществляется на открытых площадках в сформированных кучах, которые имеют различные формы и размеры. Недостатком при хранении древесиной массы таким способом является неконтролируемый самонагрев щепы до критических температур под воздействием термофильных микроорганизмов. При отсутствии должного контроля над процессом самонагревания теряется полезная масса древесины, в значительной степени ухудшается ее качество и появляется риск возгорания древесины. Для предотвращения негативных последствий необходимо из массива измельченного древесного материала отводить избыточную тепловую энергию в окружающую среду. Цель работы – исследование динамики количественных показателей теплофизических характеристик измельченных древесных материалов (технологической щепы, опилок, стружки, и коры) в среде массива насыпной кучи при хранении. При проведении работ использовали стандартные методы термического анализа, исследования проводили в лаборатории пожарно-технической экспертизы строительных и отделочных материалов и ЦКП НО «Арктика» С(А)ФУ имени М.В. Ломоносова. В результате получено математическое описание зависимости коэффициентов теплопроводности и теплоемкости измельченных древесных материалов от влажности и температуры, численные значения температур тления, воспламенения и самовоспламенения технологической щепы, опилок, отсева от щепы и коры. Результаты экспериментальных исследований применены для моделирования тепло-массообменных процессов в объектах хранения измельченной древесины и для совершенствования технологии безопасного хранения технологической щепы

Ключевые слова:
измельченная древесина, щепа, дисперсная система, теплопроводность и теплоемкость дисперсионной среды древесных материалов, температура тления, температура самовоспламенения
Текст
Текст (PDF): Читать Скачать

В технологиях переработки древесины образуется сопутствующий продукт в виде измельченной древесины (щепы, опилок, стружки, и коры). При её неправильном хранении в массиве кучи щепы возникают неуправляемые биотермо-процессы приводящие к самовозгоранию, в результате чего ежегодно безвозвратно теряется значительный объем и существенно снижаются качественные характеристики материала. Необхо-димо из массива кучи измельченной древесины принудительно отводить избыточную тепловую энергию во внешнюю окружающую среду теплоотводящими устройствами с обязательным контролем и управлением процессом хранения. Разработка и практическая реализация эффективных мер по сохранности кондиционных характеристик технологической щепы в процессе хранения её открытым способом требует комплексного учета всех факторов, которые оказывают влияние на процессы, протекающие в среде массива кучи щепы.

Массив кучи насыпных древесных материалов представляет собой сложную дисперсную систему и рассматривается нами как многофазная, многокомпонентная дисперсионная среда. Твердыми компонентами является фракция щепы, примеси и загрязнения. К газовым компонентам относятся элементы воздуха, содержащегося в массиве щепы между фракциями. Воздух вместе с частицами щепы является наиболее важным компонентом среды, поскольку их объемная и массовая доля значительна. Влага помимо пара в составе воздуха может присутствовать в виде свободной воды во фракции щепы в связанном состоянии или в виде жидкой фазы на поверхности частиц щепы. Количество влаги в перечисленных состояниях оказывает ключевое влияние на процессы аккумуляции тепла в среде массива и отвода тепловой энергии из эпицентра нагрева через массив кучи во внешнюю окружающую среду.

На процессы выделения тепла (разогрев щепы в эпицентре) и отвода тепловой энергии существенно влияет насыпная плотность многокомпонентного материала, которая сущест-венно неоднородна по объему кучи. Плотность многокомпонентной древесной смеси наряду с теплоемкостью и теплопроводностью, определяют значение коэффициента температуропроводности массива – основного параметра, характеризующего интенсивность теплообмена в среде смеси.

В научной литературе широко освещен вопрос о тепловых свойствах массивной древесины различных пород [2-7, 10]. Свойства измельченной древесины в дисперсной системе насыпной кучи изучены недостаточно [8, 9, 11].

Пространство между частицами измельченной древесины заполнено воздухом, обладающим отличными от нее теплотехническими свойствами. В массиве кучи между частицами древесины и воздухом происходит непрерывный тепло-массообмен. Значения коэффициентов теплопроводности и теплоемкости дисперсионной среды  древесных материалов в массиве насыпной кучи существенно отличаются от значений, полученных для массивной древесины [2].

Материалы и методы

В качестве исследуемого объекта приняты измельченные древесные материалы в дисперсной системе (технологическая щепа, опилки, отсев от щепы, кора) двух хвойных пород: сосны и ели, находящиеся в среде массива кучи.

Ортоборные порции фракции измельчен-ной древесины предварительно высушили до постоянной массы и просеяли через стандартный набор сит. Полученные образцы фракции использованы для дальнейшего исследования. Для щепы размером 20, 10 и 5 мм; для опилок и отсева размером 3, 2 и 1 мм. В соответствии с методикой определения коэффициента теплопроводности фракции выдерживали в сушильном шкафу Binder при температуре агента 40 °С, при достижении которой происходит активизация микробиологи-ческих процессов в дисперсной системе измельчён-ной древесины, интенсифицируется саморазогрев массива кучи, и относительной влажности агента 100 %. Контроль итоговой влажности образцов фракции осуществляли анализатором влажности MS-70 термогравиметрическим методом.

Коэффициент теплопроводности образцов измельченных древесных материалов в дисперсной системе определяли в бюксах на приборе МИТ-1 зондовым методом (ГОСТ 30256-94). Теплоемкость образцов измельченных древесных материалов в дисперсной системе определяли сканирующим калориметром DSC Q2000 методом дифференци-ального термического анализа. Температуру тления, воспламенения и самовоспламенения опре-деляли на установке ОТП по ГОСТ 12.1.044-89.

Результаты и их обсуждение

Математическое описание зависимости коэффициента теплопроводности измельченных древесных материалов в дисперсной системе массива кучи от влажности приведены в табл. 1. На рис. 1 представлена зависимость коэффициента теплопроводности образцов измельченных древес-ных материалов в дисперсной системе массива кучи от влажности среды.

В табл. 2 приведены температурные показатели термической безопасности измельчен-ной древесины в дисперсной системе массива кучи при хранении открытым способом. 

В результате анализа результатов экспериментальных исследований можно отметить:

- теплопроводность насыпных древесных материалов в среде массива кучи увеличивается прямо пропорционально повышению влажности среды;

- при W  0 %, наименьший коэффициент теплопроводности у щепы (ель) 0,0385 Вт/м °K, наибольший у отсева (ель) 0,0518 Вт/м∙°K;

- при увеличении W до 25 % коэффициент теплопроводности измельченной древесины повышается в 1,4…2,3 раза в сравнении с абсолютно сухим состоянием: наибольшее увеличение наблюдается у отсева (ель), наименьшее у щепы (сосна);

- наименьшие показатели теплопроводности у технологической щепы сосны.

Теплоемкость измельченной древесины зависит от ее температуры, влажности и насыпной плотности в массиве кучи [2, 6].

Результаты экспериментальных исследова-ний динамики изменения теплофизических характеристик измельченной древесины в дисперс-ной системе при кучевом хранении позволяют отметить что, с увеличением температуры до 70…90 °С, её теплоемкость нелинейно возрастает, а при дальнейшем повышении температуры уменьшается.

На рис. 2 приведены экспериментальные зна-чения коэффициента теплоемкости С, кДж/(кг·°С) измельченных древесных материалов в дисперсной системе массива кучи от температуры T, °С. Оценивая характеристики измельченной древесины в дисперсной системе массива кучи установлено, что наибольшие значения коэффициентов теплоёмкости: у коры С = 4,46 кДж/(кг·°С) при температуре 90 °С, у отсева от щепы
С = 2,81 кДж/(кг·°С) при температуре 76 °С, у опилок С = 2,25 кДж/(кг·°С) при температуре 90
 °С, у щепы С = 1,82 кДж/(кг·°С) при T = 86 °С.

В случае, когда темп аккумуляции тепла в центре насыпной кучи значительно превосходит скорость отвода тепла из массива в атмосферу температура в эпицентре кучи существенно возрастает и может достигнуть критических значений, при которых древесина деструктируется, терморазлагается и самовозгорается.

Для оценки условий самовозгорания измельченных древесных материалов в среде массива кучи были экспериментально изучены температура тления, воспламенения и самовозгорания щепы, отсева от щепы, опилок и коры (табл. 2). При этом влажность образцов была приближена к влажности измельченных древесных материалов в практике хранения 40…60 %.

Наибольшая температура самовозгорания установлена  у щепы сосны 466,2 ± 10,4 °С наименьшая у коры сосны 375,8 ± 14,8 °С. Температура тления в 1,6…2,2 раза меньше температуры самовозгорания.

В целом при проведении экспериментальных исследований относительная ошибка опытов не превышала 1,3…6,0 %, что свидетельствует о приемлемой точности полученных результатов.

 

 

Таблица 1

Коэффициент теплопроводности измельченной древесины в зависимости от влажности при кучевом хранении

Вид

измельченного материала

Порода

древесины

Математическое описание

зависимости

r2

1

щепа

сосна

λщ.с = 0,0009Wщ.с + 0,0515

0,77

2

щепа

ель

λщ.е = 0,0013Wщ.е + 0,0385

0,76

3

опилки

сосна

λо.с = 0,0022 Wо.с + 0,0623

0,99

4

опилки

ель

λо.е = 0,0018 Wо.е + 0,0511

0,97

5

отсев от щепы

ель

λот.е = 0,0026Wот.е + 0,0518

0,99

6

кора измельченная

ель

λк.е = 0,0019 Wк.е + 0,0458

0,90

Источник: собственные вычисления (разработки)

 

Рис. 1. Теплопроводность измельченных древесных материалов в зависимости от влажности при кучевом хранении: 1 – щепа (сосна); 2 – щепа (ель); 3 – опилки (сосна);4 – опилки (ель); 5 – отсев от щепы (ель).

Источник: собственные вычисления (разработки)

Рис. 2. Теплоемкость измельченных древесных материалов в зависимости от температуры при кучевом хранении: 1 – щепа (ель); 2 – опилки (ель); 3 – отсев от щепы (ель); 4 – кора (ель).

Источник: собственные вычисления (разработки)

 

Таблица 2

Показатели термической безопасности измельченной древесины при  кучевом хранении

Материал

Порода

Температура

Среднее значение температуры T, °С

Относительная ошибка, %

щепа

сосна

воспламенения

230,0 ± 6,9

3,0

тления

215,0 ± 6,9

3,2

самовозгорания

466,2 ± 10,4

2,2

ель

воспламенения

227,6 ± 8,8

3,9

тления

229,0 ± 13,1

5,7

самовозгорания

405,6 ± 5,1

1,3

отсев

сосна

воспламенения

276,2 ± 5,0

1,8

тления

240,7 ± 14,5

6,0

самовозгорания

388,6 ± 10,7

2,7

ель

воспламенения

218,4 ± 11,2

5,1

тления

195,6 ± 9,5

4,9

самовозгорания

399,2 ± 7,6

1,9

опилки

сосна

воспламенения

205,9 ± 4,4

2,1

тления

247,3 ±13,1

5,3

самовозгорания

416,0 ± 12,4

3,0

ель

воспламенения

224,4 ± 8,6

3,8

тления

225,3 ± 10,0

4,4

самовозгорания

454,6 ± 11,5

2,5

кора

сосна

воспламенения

213,6 ± 2,1

1,0

тления

225,4 ± 10,7

4,7

самовозгорания

375,8 ± 14,8

3,9

ель

воспламенения

223,7 ± 1,7

0,8

тления

231,4 ± 5,2

2,3

самовозгорания

421,0 ± 3,3

0,8

Источник: собственные вычисления (разработки)

 

 

Заключение

1. Полученные результаты исследований позволяют прогнозировать динамику процесса самонагрева в массиве кучи измельченной древесины при хранении и своевременно принимать меры по предотвращению потерь полезной массы измельченной древесины, ухудшению её качественных характеристик и снижению риска возгорания древесного материала;

2. Показатель теплопроводности в среде массива кучи измельченной древесины в
2,2...3,6 раза, а теплоемкость в 1,5…2,0 раза меньше соответствующих характеристик цельной древесины;

3. Показатель температуры самовозгорания технологической щепы ели в среде массива 405,6 °С значительно меньше показателя температуры самовозгорания технологической щепы сосны в среде массива 466,2 °С. Наименьший показатель температуры самовозгорания у коры сосны 375,8  °С;

4. Для стабилизации температурно-влажностного режима измельченной древесины в среде массива кучи при хранении необходимо отводить избыточную тепловую энергию в окружающую среду. Для этого предстоит разработать энергоэффективные, экологически безопасные, конструктивные решения тепло-отводящих устройств.

Список литературы

1. Мелехов В. И. Экспериментальное исследование распределения температуры и влажности щепы при открытом способе хранения / В. И. Мелехов, Д. А. Братилов, А. Н. Деснев // Известия ТулГУ. - 2015. - № 5(2). - С. 98-102.

2. Уголев, Б. Н. Древесиноведение и лесное товароведение : учебник / Б. Н. Уголев. - Москва : Академия, 2004. - 272 с.

3. Кайнов, П. А. Выявление закономерностей термодинамики древесины / П. А. Кайнов, П. М. Мазуркин, Ш. Р. Мухаметзянов // Вестник Казанского технологического университета. - 2013. - Т. 16. - № 2. - С. 61-63.

4. Исследования теплоизолирующей способности древесной коры / З. Пастори, И. Р. Мохачине, Г. А. Горбачева, В. Г. Санаев // Лесотехнический журнал. - 2017. - Т. 7. - № 1 (25). - С. 157-161.

5. Шепель, Г. А. О коэффициенте температуропроводности древесины / Г. А. Шепель, В. Ф. Надеин, Н. Б. Баланцева // Известия вузов. Лесной журнал. - 2007. - № 2. - С. 133-135.

6. Математическая модель тепломассообменных процессов, протекающих при переработке древесных отходов / Р. Г. Сафин, Д. А. Ахметова, А. В. Сафина, Р. Р. Зиатдинов, А. Р. Хабибуллина // Вестник Казанского технологического университета. - 2015. - Т. 18. - № 3. - С. 161-163.

7. Гришин, А. М. Общая физико-математическая модель зажигания и горения древесины / А. М. Гришин // Вестник Томского государственного университета. - 2010. - № 2 (10). - С. 60-70.

8. Тимербаев, Н. Ф. Моделирование тепломассопереноса в древесных материалах и продуктах переработки / Н. Ф. Тимербаев // Вестник Казанского технологического университета. - 2011. № 2. - С. 89-93.

9. Комяков, А. Н. О теплопроводности дисперсных материалов типа замороженной древесной щепы / А. Н. Комяков, А. А. Лукьянов // Лесной вестник. - 2010. - № 4. - С. 132-136.

10. Ragland, K. W. Properties of Wood for Combustion Analysis» / K. W. Ragland, D. J. Aerts, A. J. Baker // Bioresource Technology. - 1991. - Vol. 37. - P. 161-168.

11. Skogsberg, K. Wood chips as thermal insulation of snow / K. Skogsberg, A. Lundberg // Cold Regions Science and Technology. - 2005. - Vol. 43. - P. 207-218.


Войти или Создать
* Забыли пароль?